WEBVTT

NOTE duration:"00:53:35" NOTE recognizability:0.597

NOTE language:en-us

NOTE Confidence: 0.75512505

00:00:00.000 --> 00:00:02.394 Morning. For those of you who don't know me,

NOTE Confidence: 0.75512505

00:00:02.400 --> 00:00:03.471 I'm Rachel Greenup.

NOTE Confidence: 0.75512505

 $00{:}00{:}03.471 \dashrightarrow 00{:}00{:}06.396$ I'm Chief of Breast surgery and newly named

NOTE Confidence: 0.75512505

 $00:00:06.396 \longrightarrow 00:00:08.916$ Co director of the SMILO Breast Program.

NOTE Confidence: 0.75512505

 $00:00:08.920 \longrightarrow 00:00:11.800$ And I have the honor today of introducing Dr.

NOTE Confidence: 0.75512505

 $00{:}00{:}11.800 \dashrightarrow 00{:}00{:}15.620$ Megan King. Doctor King is an associate

NOTE Confidence: 0.75512505

 $00:00:15.620 \longrightarrow 00:00:18.160$ professor of cell biology and of molecular,

NOTE Confidence: 0.75512505

 $00:00:18.160 \longrightarrow 00:00:19.820$ cellular and development biology.

NOTE Confidence: 0.75512505

 $00{:}00{:}19.820 \dashrightarrow 00{:}00{:}23.236$ She's also the Co leader of radio Biology

NOTE Confidence: 0.75512505

 $00{:}00{:}23.236 \to 00{:}00{:}25.804$ and Genome Integrity Research program at

NOTE Confidence: 0.75512505

 $00{:}00{:}25.804 \dashrightarrow 00{:}00{:}28.832$ the Yale Cancer Center and an Associate

NOTE Confidence: 0.75512505

 $00:00:28.832 \longrightarrow 00:00:31.256$ Cancer Center Director for Basic Science.

NOTE Confidence: 0.75512505

 $00:00:31.260 \longrightarrow 00:00:33.276$ She did undergrad at Brandeis and

00:00:33.276 --> 00:00:36.614 then went on to receive her PhD in

NOTE Confidence: 0.75512505

00:00:36.614 --> 00:00:38.534 Biochemistry and molecular Biophysics

NOTE Confidence: 0.75512505

00:00:38.540 --> 00:00:40.730 from the University of Pennsylvania

NOTE Confidence: 0.75512505

00:00:40.730 --> 00:00:43.327 under the mentorship of Doctor Mark

NOTE Confidence: 0.75512505

 $00:00:43.327 \longrightarrow 00:00:46.076$ Lemon and went on to get a post doc

NOTE Confidence: 0.75512505

00:00:46.076 --> 00:00:48.396 training with at Rockefeller University

NOTE Confidence: 0.75512505

 $00{:}00{:}48.396 \dashrightarrow 00{:}00{:}51.420$ where she discovered new mechanisms for

NOTE Confidence: 0.75512505

 $00:00:51.500 \longrightarrow 00:00:54.572$ the targeting and function of integral

NOTE Confidence: 0.75512505

 $00{:}00{:}54.572 \dashrightarrow 00{:}00{:}56.620$ inter nuclear membrane proteins.

NOTE Confidence: 0.75512505

00:00:56.620 --> 00:00:59.028 Since founding her own group in 2009,

NOTE Confidence: 0.75512505

 $00{:}00{:}59.028 \mathrel{--}{>} 00{:}01{:}01.236$ Megan has continued to investigate the

NOTE Confidence: 0.75512505

 $00:01:01.236 \longrightarrow 00:01:03.266$ broad array of biological functions

NOTE Confidence: 0.75512505

 $00{:}01{:}03.266 \dashrightarrow 00{:}01{:}05.846$ that are integrated at the nuclear

NOTE Confidence: 0.75512505

00:01:05.846 --> 00:01:08.412 envelope from impacts on DNA repaired

NOTE Confidence: 0.75512505

 $00:01:08.412 \longrightarrow 00:01:10.457$ to nuclear and cellular mechanisms.

NOTE Confidence: 0.75512505

00:01:10.460 --> 00:01:13.292 She was named a Sarah Scholar in 2011

 $00{:}01{:}13.292 \dashrightarrow 00{:}01{:}16.108$ and is the recipient of the NIH New

NOTE Confidence: 0.75512505

00:01:16.108 --> 00:01:19.138 Innovator Award and is currently an

NOTE Confidence: 0.75512505

00:01:19.138 --> 00:01:20.698 Allen Distinguished Investigator.

NOTE Confidence: 0.75512505

00:01:20.700 --> 00:01:22.660 She's been at Yale for 15 years,

NOTE Confidence: 0.75512505

 $00:01:22.660 \longrightarrow 00:01:24.396$ and we're excited to hear about her

NOTE Confidence: 0.75512505

00:01:24.396 --> 00:01:26.500 work today. So thank you, Doctor King.

NOTE Confidence: 0.9675821

 $00:01:31.540 \longrightarrow 00:01:32.692$ Thank you so much.

NOTE Confidence: 0.9675821

 $00:01:32.692 \longrightarrow 00:01:34.420$ It's a pleasure to be here.

NOTE Confidence: 0.9675821

 $00:01:34.420 \longrightarrow 00:01:37.636$ And I think, you know,

NOTE Confidence: 0.9675821

00:01:37.636 --> 00:01:38.140 hearing that bio,

NOTE Confidence: 0.9675821

 $00{:}01{:}38.140 \dashrightarrow 00{:}01{:}40.396$ it always reminds me of how far I've

NOTE Confidence: 0.9675821

00:01:40.396 --> 00:01:42.878 come to what I'm going to be talking

NOTE Confidence: 0.9675821

 $00{:}01{:}42.878 \dashrightarrow 00{:}01{:}45.196$ about today and how much that is

NOTE Confidence: 0.9675821

 $00:01:45.196 \longrightarrow 00:01:46.896$ a consequence of the environment

NOTE Confidence: 0.9675821

 $00:01:46.896 \longrightarrow 00:01:49.092$ at Yale and the interactions that

 $00:01:49.092 \longrightarrow 00:01:50.982$ really have been driven initially

NOTE Confidence: 0.9675821

 $00:01:50.982 \longrightarrow 00:01:53.323$ by joining what was on the Radio

NOTE Confidence: 0.9675821

 $00:01:53.323 \longrightarrow 00:01:55.627$ biology and genome and radio biology

NOTE Confidence: 0.9675821

 $00:01:55.627 \longrightarrow 00:01:57.575$ and radiotherapy research program,

NOTE Confidence: 0.9675821

00:01:57.580 --> 00:01:59.780 which was connected to me by Patrick Sung,

NOTE Confidence: 0.9675821

 $00:01:59.780 \longrightarrow 00:02:00.976$ who's no longer here.

NOTE Confidence: 0.9675821

00:02:00.976 --> 00:02:02.770 But he kind of immediately roped

NOTE Confidence: 0.9675821

 $00:02:02.829 \longrightarrow 00:02:05.136$ me into that program and then all

NOTE Confidence: 0.9675821

 $00{:}02{:}05.136 \dashrightarrow 00{:}02{:}07.458$ of the relationships I made through

NOTE Confidence: 0.9675821

00:02:07.458 --> 00:02:08.816 that particularly with Joanne,

NOTE Confidence: 0.9675821

 $00{:}02{:}08.816 \dashrightarrow 00{:}02{:}10.748$ Sweezy and Pat Larusso and really

NOTE Confidence: 0.9675821

 $00:02:10.748 \longrightarrow 00:02:12.414$ it's that transition that is

NOTE Confidence: 0.9675821

 $00:02:12.414 \longrightarrow 00:02:13.702$ really spurred everything that

NOTE Confidence: 0.9675821

 $00{:}02{:}13.702 \dashrightarrow 00{:}02{:}15.410$ I'm going to talk about today.

NOTE Confidence: 0.9675821

 $00:02:15.410 \longrightarrow 00:02:17.673$ And so I'm really appreciative of

NOTE Confidence: 0.9675821

 $00{:}02{:}17.673 \dashrightarrow 00{:}02{:}19.731$ that because I think it's really

 $00{:}02{:}19.731 \dashrightarrow 00{:}02{:}22.419$ going to broaden the the scope of

NOTE Confidence: 0.9675821

 $00:02:22.419 \longrightarrow 00:02:24.003$ where this fundamental biology,

NOTE Confidence: 0.9675821

00:02:24.010 --> 00:02:26.284 which hopefully you'll see today about

NOTE Confidence: 0.9675821

00:02:26.284 --> 00:02:28.969 the nuclear envelope is really related to,

NOTE Confidence: 0.9675821

 $00:02:28.970 \longrightarrow 00:02:29.634$ you know,

NOTE Confidence: 0.9675821

 $00{:}02{:}29.634 \dashrightarrow 00{:}02{:}31.294$ a chemotherapy approach that's being

NOTE Confidence: 0.9675821

00:02:31.294 --> 00:02:33.200 broadly used in which we're hoping

NOTE Confidence: 0.9675821

 $00:02:33.200 \longrightarrow 00:02:35.020$ could be used and even more context.

NOTE Confidence: 0.9675821

00:02:35.020 --> 00:02:36.460 And so that's what I'm going

NOTE Confidence: 0.9675821

 $00:02:36.516 \longrightarrow 00:02:37.460$ to talk about today.

NOTE Confidence: 0.9675821

 $00:02:37.460 \longrightarrow 00:02:38.783$ And then the surprise to us has

NOTE Confidence: 0.9675821

 $00:02:38.783 \longrightarrow 00:02:39.922$ been a connection between this

NOTE Confidence: 0.9675821

 $00{:}02{:}39.922 \dashrightarrow 00{:}02{:}40.978$ and in nate immune signaling,

NOTE Confidence: 0.9675821

 $00:02:40.980 \longrightarrow 00:02:43.260$ which is also not our expertise.

NOTE Confidence: 0.9675821

 $00:02:43.260 \longrightarrow 00:02:46.236$ And so I really appreciate anyone

 $00:02:46.236 \longrightarrow 00:02:48.559$ here online now later thoughts

NOTE Confidence: 0.9675821

 $00{:}02{:}48.559 \dashrightarrow 00{:}02{:}50.593$ on that because there's so many

NOTE Confidence: 0.9675821

 $00{:}02{:}50.593 \dashrightarrow 00{:}02{:}52.830$ people at Yale who do have more

NOTE Confidence: 0.9675821

 $00:02:52.830 \longrightarrow 00:02:54.820$ expertise in that area than we do.

NOTE Confidence: 0.9675821

 $00:02:54.820 \longrightarrow 00:02:55.244$ OK.

NOTE Confidence: 0.9675821

00:02:55.244 --> 00:02:56.940 So just my disclosure,

NOTE Confidence: 0.9675821

 $00:02:56.940 \longrightarrow 00:02:59.156$ some of this work is funded through the

NOTE Confidence: 0.9675821

 $00:02:59.156 \longrightarrow 00:03:00.580$ strategic alliance with AstraZeneca.

NOTE Confidence: 0.539626

 $00{:}03{:}03.150 \dashrightarrow 00{:}03{:}06.118$ So as as many of you are familiar

NOTE Confidence: 0.539626

 $00:03:06.118 \longrightarrow 00:03:09.107$ with PARP inhibitors are really the

NOTE Confidence: 0.539626

 $00:03:09.110 \longrightarrow 00:03:12.030$ canonical example of synthetic lethality.

NOTE Confidence: 0.539626

 $00:03:12.030 \longrightarrow 00:03:14.746$ And it's such a powerful concept because

NOTE Confidence: 0.539626

 $00:03:14.746 \longrightarrow 00:03:17.381$ it really highlights how we might use

NOTE Confidence: 0.539626

 $00{:}03{:}17.381 \dashrightarrow 00{:}03{:}19.131$ approaches that are really specific

NOTE Confidence: 0.539626

00:03:19.131 --> 00:03:21.613 to tumor cells and otherwise do not

NOTE Confidence: 0.539626

 $00:03:21.613 \longrightarrow 00:03:23.854$ affect all the normal cells of the body.

00:03:23.854 --> 00:03:25.904 And and what is you know, fabulous approach,

NOTE Confidence: 0.539626

 $00:03:25.904 \longrightarrow 00:03:27.789$ right that that would be.

NOTE Confidence: 0.539626

 $00:03:27.790 \longrightarrow 00:03:31.254$ And so the idea is that PARP inhibitors

NOTE Confidence: 0.539626

 $00:03:31.260 \longrightarrow 00:03:33.035$ in particular cause single stranded

NOTE Confidence: 0.539626

 $00{:}03{:}33.035 \dashrightarrow 00{:}03{:}35.481$ DNA damage to persist or at least

NOTE Confidence: 0.539626

00:03:35.481 --> 00:03:37.595 that's one of the mechanisms that we

NOTE Confidence: 0.539626

 $00:03:37.595 \longrightarrow 00:03:39.736$ think about as being important here.

NOTE Confidence: 0.539626

 $00:03:39.740 \longrightarrow 00:03:41.894$ And that typically cells can tolerate

NOTE Confidence: 0.539626

00:03:41.894 --> 00:03:44.659 this kind of damage because they have

NOTE Confidence: 0.539626

 $00{:}03{:}44.659 \dashrightarrow 00{:}03{:}46.769$ a functional homologous or combination

NOTE Confidence: 0.539626

00:03:46.769 --> 00:03:48.885 DNA repair mechanism that can act

NOTE Confidence: 0.539626

 $00{:}03{:}48.885 \dashrightarrow 00{:}03{:}51.161$ in SNG 2 and repair these breaks.

NOTE Confidence: 0.539626

 $00{:}03{:}51.161 \dashrightarrow 00{:}03{:}53.927$ And this leads to cell survival.

NOTE Confidence: 0.539626

 $00:03:53.930 \longrightarrow 00:03:55.845$ However, in the consequence of

NOTE Confidence: 0.539626

 $00:03:55.845 \longrightarrow 00:03:57.377$ defects and homologous recombination

00:03:57.377 --> 00:03:59.754 and kind of the classic example of

NOTE Confidence: 0.539626

 $00:03:59.754 \longrightarrow 00:04:01.553$ this are pathogenic mutations in the

NOTE Confidence: 0.539626

00:04:01.553 --> 00:04:02.885 BRCA one and BRCA 2 genes.

NOTE Confidence: 0.539626

 $00:04:02.890 \longrightarrow 00:04:05.746$ There's a defect in tolerating this damage

NOTE Confidence: 0.539626

 $00:04:05.746 \longrightarrow 00:04:08.646$ and this will lead to to cell death,

NOTE Confidence: 0.539626

 $00:04:08.650 \longrightarrow 00:04:08.962$ right.

NOTE Confidence: 0.539626

 $00:04:08.962 \longrightarrow 00:04:11.146$ And so this is the mechanism where

NOTE Confidence: 0.539626

 $00{:}04{:}11.146 \dashrightarrow 00{:}04{:}13.216$ it's the combination of the HR

NOTE Confidence: 0.539626

00:04:13.216 --> 00:04:15.280 defect on the PARP inhibitor that

NOTE Confidence: 0.539626

 $00:04:15.344 \longrightarrow 00:04:16.969$ drives a tumor cell death.

NOTE Confidence: 0.539626

 $00{:}04{:}16.970 \dashrightarrow 00{:}04{:}18.950$ So I want to just set the stage for

NOTE Confidence: 0.539626

 $00:04:18.950 \longrightarrow 00:04:20.853$ what I'm going to talk about today

NOTE Confidence: 0.539626

 $00:04:20.853 \longrightarrow 00:04:22.730$ by by reminding you about how P53

NOTE Confidence: 0.539626

 $00{:}04{:}22.730 \dashrightarrow 00{:}04{:}24.410$ works because I'm going to use this

NOTE Confidence: 0.539626

 $00:04:24.410 \longrightarrow 00:04:26.679$ as an example of of our kind of

NOTE Confidence: 0.539626

00:04:26.679 --> 00:04:28.391 framework for thinking about the story

 $00:04:28.391 \longrightarrow 00:04:30.134$ that I'm going to tell the debt.

NOTE Confidence: 0.539626

00:04:30.140 --> 00:04:33.482 So in interface in normal cells, right,

NOTE Confidence: 0.539626

00:04:33.482 --> 00:04:35.294 we have when there's DNA damage,

NOTE Confidence: 0.539626

 $00:04:35.300 \longrightarrow 00:04:37.912$ there is the activation of P53 and

NOTE Confidence: 0.539626

 $00:04:37.912 \longrightarrow 00:04:40.614$ P53 is is really this decision point,

NOTE Confidence: 0.539626

 $00:04:40.620 \longrightarrow 00:04:44.330$ It's both activating mechanisms to

NOTE Confidence: 0.539626

00:04:44.330 --> 00:04:45.662 repair that damage, right.

NOTE Confidence: 0.539626

 $00{:}04{:}45.662 \dashrightarrow 00{:}04{:}48.337$ So that the first response of the cell

NOTE Confidence: 0.539626

 $00:04:48.337 \longrightarrow 00:04:50.769$ is try to tolerate and repair this damage,

NOTE Confidence: 0.539626

 $00:04:50.770 \longrightarrow 00:04:52.314$ stall the cell cycle,

NOTE Confidence: 0.539626

 $00{:}04{:}52.314 \dashrightarrow 00{:}04{:}55.584$ fix the genome and then go into mitosis

NOTE Confidence: 0.539626

 $00:04:55.584 \longrightarrow 00:04:58.643$ and and have normal cell growth.

NOTE Confidence: 0.539626

 $00{:}04{:}58.650 \dashrightarrow 00{:}05{:}02.010$ But but if this damage is too deleterious,

NOTE Confidence: 0.539626

 $00:05:02.010 \longrightarrow 00:05:02.850$ if it persists,

NOTE Confidence: 0.539626

 $00:05:02.850 \longrightarrow 00:05:04.250$ if it can't be tolerated,

 $00:05:04.250 \longrightarrow 00:05:06.168$ then this is going to lead to

NOTE Confidence: 0.539626

 $00{:}05{:}06.170 \dashrightarrow 00{:}05{:}07.674$ the stimulation of apoptosis.

NOTE Confidence: 0.539626

 $00:05:07.674 \longrightarrow 00:05:09.930$ And so really this is this

NOTE Confidence: 0.539626

 $00:05:09.999 \longrightarrow 00:05:12.652$ combination of repair and then when

NOTE Confidence: 0.539626

00:05:12.652 --> 00:05:15.220 we can't repair driving cell death,

NOTE Confidence: 0.539626

 $00:05:15.220 \longrightarrow 00:05:15.528$ however,

NOTE Confidence: 0.539626

 $00:05:15.528 \longrightarrow 00:05:16.144$ you know,

NOTE Confidence: 0.539626

 $00{:}05{:}16.144 \dashrightarrow 00{:}05{:}18.300$ we know that this is a mechanism

NOTE Confidence: 0.539626

 $00{:}05{:}18.367 \dashrightarrow 00{:}05{:}20.581$ that is dysregulated in the vast

NOTE Confidence: 0.539626

 $00:05:20.581 \longrightarrow 00:05:22.503$ majority of tumors including those

NOTE Confidence: 0.539626

 $00{:}05{:}22.503 \dashrightarrow 00{:}05{:}24.418$ that respond to PARP inhibitors.

NOTE Confidence: 0.539626

 $00:05:24.420 \longrightarrow 00:05:26.697$ And so this is not the mechanism, right.

NOTE Confidence: 0.539626

 $00:05:26.697 \longrightarrow 00:05:29.233$ So we know we can get the synthetic

NOTE Confidence: 0.539626

 $00:05:29.233 \longrightarrow 00:05:30.610$ lethality of PARP inhibitors

NOTE Confidence: 0.539626

 $00:05:30.610 \longrightarrow 00:05:32.590$ with HR defects even in the

NOTE Confidence: 0.539626

 $00:05:32.590 \longrightarrow 00:05:34.201$ context of dysregulated P53.

 $00:05:34.201 \longrightarrow 00:05:35.706$ So what is this mechanism

NOTE Confidence: 0.539626

 $00{:}05{:}35.706 \dashrightarrow 00{:}05{:}37.731$ actually and you might think that

NOTE Confidence: 0.539626

 $00{:}05{:}37.731 \dashrightarrow 00{:}05{:}39.247$ we understand this mechanism,

NOTE Confidence: 0.539626

 $00:05:39.250 \longrightarrow 00:05:41.106$ but what I'm going to tell you about

NOTE Confidence: 0.539626

 $00{:}05{:}41.106 \dashrightarrow 00{:}05{:}43.150$ today is that we we don't and I'm

NOTE Confidence: 0.539626

 $00:05:43.150 \longrightarrow 00:05:45.250$ going to focus today disclaimer on

NOTE Confidence: 0.539626

 $00:05:45.250 \longrightarrow 00:05:47.768$ the tumor cell intrinsic mechanisms.

NOTE Confidence: 0.539626

 $00{:}05{:}47.770 \dashrightarrow 00{:}05{:}49.554$ That is not to negate the fact that

NOTE Confidence: 0.539626

 $00:05:49.554 \longrightarrow 00:05:51.673$ there are other roles for the immune

NOTE Confidence: 0.539626

 $00:05:51.673 \longrightarrow 00:05:53.288$ system for the tumor microenvironment.

NOTE Confidence: 0.539626

 $00:05:53.290 \longrightarrow 00:05:55.282$ But what we know is that in in

NOTE Confidence: 0.539626

 $00{:}05{:}55.282 \dashrightarrow 00{:}05{:}57.405$ HR deficient cells in a dish PARP

NOTE Confidence: 0.539626

 $00{:}05{:}57.405 \dashrightarrow 00{:}05{:}58.970$ inhibitors can cause cell deaths.

NOTE Confidence: 0.531500307142857

 $00:05:58.970 \longrightarrow 00:06:01.786$ So we know that there is at least

NOTE Confidence: 0.531500307142857

00:06:01.786 --> 00:06:04.074 a sufficiency in in cells and

 $00:06:04.074 \longrightarrow 00:06:06.324$ culture for a tumor cell intrinsic

NOTE Confidence: 0.531500307142857

 $00:06:06.404 \longrightarrow 00:06:09.438$ mechanism of cell death and IT and

NOTE Confidence: 0.531500307142857

 $00:06:09.440 \longrightarrow 00:06:11.896$ and how do we think about what kind

NOTE Confidence: 0.531500307142857

 $00{:}06{:}11.896 \dashrightarrow 00{:}06{:}13.548$ of surveillance mechanisms might be

NOTE Confidence: 0.531500307142857

 $00:06:13.548 \longrightarrow 00:06:17.080$ akin to P53 that that drive this.

NOTE Confidence: 0.531500307142857

 $00{:}06{:}17.080 \dashrightarrow 00{:}06{:}18.856$ So I just want to highlight a few

NOTE Confidence: 0.531500307142857

 $00:06:18.856 \longrightarrow 00:06:20.838$ of the challenges that we face in

NOTE Confidence: 0.531500307142857

 $00:06:20.838 \longrightarrow 00:06:22.664$ the use of HARP inhibitors because

NOTE Confidence: 0.531500307142857

 $00:06:22.664 \longrightarrow 00:06:24.434$ really this is our motivation for

NOTE Confidence: 0.531500307142857

 $00:06:24.434 \longrightarrow 00:06:26.100$ the kind of fundamental studies

NOTE Confidence: 0.531500307142857

 $00:06:26.100 \longrightarrow 00:06:28.440$ that I'm going to talk about.

NOTE Confidence: 0.531500307142857

 $00:06:28.440 \longrightarrow 00:06:30.504$ You know, it's very clear that

NOTE Confidence: 0.531500307142857

00:06:30.504 --> 00:06:31.536 PARP inhibitors specifically

NOTE Confidence: 0.531500307142857

00:06:31.536 --> 00:06:32.958 kill HR deficient cells,

NOTE Confidence: 0.531500307142857

 $00:06:32.960 \longrightarrow 00:06:33.860$ but we don't understand

NOTE Confidence: 0.531500307142857

 $00:06:33.860 \longrightarrow 00:06:34.760$ the cell death mechanism.

 $00:06:34.760 \longrightarrow 00:06:36.588$ As I already highlighted,

NOTE Confidence: 0.531500307142857

 $00:06:36.588 \longrightarrow 00:06:38.873$ acquired resistance is a major

NOTE Confidence: 0.531500307142857

00:06:38.873 --> 00:06:41.234 challenge and it's really well

NOTE Confidence: 0.531500307142857

 $00:06:41.234 \longrightarrow 00:06:43.062$ explored in preclinical models

NOTE Confidence: 0.531500307142857

 $00{:}06{:}43.062 \dashrightarrow 00{:}06{:}45.439$ through things like CRISPR screens.

NOTE Confidence: 0.531500307142857

 $00:06:45.440 \longrightarrow 00:06:47.550$ But actually the insights from

NOTE Confidence: 0.531500307142857

 $00:06:47.550 \longrightarrow 00:06:49.660$ patient samples is really still

NOTE Confidence: 0.531500307142857

 $00{:}06{:}49.733 \dashrightarrow 00{:}06{:}51.499$ rather limited and understanding

NOTE Confidence: 0.531500307142857

 $00:06:51.499 \longrightarrow 00:06:54.194$ the cell death mechanism that

NOTE Confidence: 0.531500307142857

 $00{:}06{:}54.194 \dashrightarrow 00{:}06{:}56.350$ PARP inhibitors precipitate could

NOTE Confidence: 0.531500307142857

 $00:06:56.420 \longrightarrow 00:06:58.376$ really help in in this area.

NOTE Confidence: 0.531500307142857

 $00{:}06{:}58.380 \dashrightarrow 00{:}07{:}01.609$ A major challenge is that we lack a

NOTE Confidence: 0.531500307142857

 $00{:}07{:}01.609 \dashrightarrow 00{:}07{:}04.052$ robust biomarker that can tell us that

NOTE Confidence: 0.531500307142857

 $00:07:04.052 \longrightarrow 00:07:06.496$ PARP inhibitors are likely to be effective.

NOTE Confidence: 0.531500307142857

 $00:07:06.500 \longrightarrow 00:07:08.018$ So this can either be that

 $00:07:08.018 \longrightarrow 00:07:08.777$ cells are reconstituted,

NOTE Confidence: 0.531500307142857

 $00{:}07{:}08.780 {\:{\mbox{--}}\!>\:} 00{:}07{:}10.412$ homologous recombination or there

NOTE Confidence: 0.531500307142857

00:07:10.412 --> 00:07:13.258 could be other contexts outside of the

NOTE Confidence: 0.531500307142857

 $00:07:13.258 \longrightarrow 00:07:15.238$ genetic kind of germline mutations and

NOTE Confidence: 0.531500307142857

 $00:07:15.238 \longrightarrow 00:07:17.794$ BRCA one and BRCA 2 or even somatic

NOTE Confidence: 0.531500307142857

 $00:07:17.794 \longrightarrow 00:07:19.687$ mutations where it could be there

NOTE Confidence: 0.531500307142857

 $00:07:19.687 \longrightarrow 00:07:22.009$ is an HR defect that's actionable.

NOTE Confidence: 0.531500307142857

 $00:07:22.010 \dashrightarrow 00:07:23.991$ But because we don't have a biomarker

NOTE Confidence: 0.531500307142857

 $00{:}07{:}23.991 \dashrightarrow 00{:}07{:}26.290$ for HR status that is at least dynamic,

NOTE Confidence: 0.53150030714285700:07:26.290 --> 00:07:26.650 right,

NOTE Confidence: 0.531500307142857

 $00{:}07{:}26.650 \dashrightarrow 00{:}07{:}28.450$ There are kind of sequencing

NOTE Confidence: 0.531500307142857

 $00:07:28.450 \longrightarrow 00:07:29.170$ based approaches,

NOTE Confidence: 0.531500307142857

 $00{:}07{:}29.170 \dashrightarrow 00{:}07{:}31.900$ but we don't have a classic kind

NOTE Confidence: 0.531500307142857

 $00:07:31.900 \longrightarrow 00:07:33.070$ of pathological straightforward

NOTE Confidence: 0.531500307142857

00:07:33.134 --> 00:07:34.678 psychology kind of approach

NOTE Confidence: 0.531500307142857

 $00:07:34.678 \longrightarrow 00:07:36.608$ and that's a real limitation.

00:07:38.730 --> 00:07:41.180 And and lastly, there's a lot of

NOTE Confidence: 0.623311

 $00:07:41.180 \longrightarrow 00:07:42.693$ enthusiasm about combining PARP

NOTE Confidence: 0.623311

 $00:07:42.693 \longrightarrow 00:07:44.305$ inhibitors with immune checkpoint

NOTE Confidence: 0.623311

 $00:07:44.305 \longrightarrow 00:07:46.719$ blockades and indeed a number of

NOTE Confidence: 0.623311

 $00:07:46.719 \longrightarrow 00:07:48.399$ trials that are exploring this.

NOTE Confidence: 0.623311

00:07:48.400 --> 00:07:50.680 But we don't actually understand the

NOTE Confidence: 0.623311

 $00:07:50.680 \longrightarrow 00:07:52.702$ underlying mechanisms of why those

NOTE Confidence: 0.623311

 $00:07:52.702 \longrightarrow 00:07:54.478$ combinations might be effective.

NOTE Confidence: 0.623311

 $00:07:54.480 \longrightarrow 00:07:55.640$ And to really understand that,

NOTE Confidence: 0.623311

 $00:07:55.640 \longrightarrow 00:07:57.341$ we have to understand how how carpenters

NOTE Confidence: 0.623311

00:07:57.341 --> 00:07:59.360 are working and and This is why we're

NOTE Confidence: 0.623311

 $00{:}07{:}59.360 \dashrightarrow 00{:}08{:}00.600$ really interested in the crosstalk.

NOTE Confidence: 0.623311

 $00{:}08{:}00.600 \dashrightarrow 00{:}08{:}02.497$ I'll talk about today with the innate

NOTE Confidence: 0.623311

 $00:08:02.497 \longrightarrow 00:08:04.198$ immune system and how that might be

NOTE Confidence: 0.623311

 $00:08:04.200 \longrightarrow 00:08:06.678$ contribute to the the rationale for

 $00:08:06.678 \longrightarrow 00:08:08.760$ these combinations and might point

NOTE Confidence: 0.623311

 $00{:}08{:}08.760 \dashrightarrow 00{:}08{:}10.920$ to what the right approaches are.

NOTE Confidence: 0.623311

 $00:08:10.920 \longrightarrow 00:08:12.040$ So as I said,

NOTE Confidence: 0.623311

 $00:08:12.040 \longrightarrow 00:08:14.535$ I'm going to focus on this cell death

NOTE Confidence: 0.623311

00:08:14.535 --> 00:08:17.878 mechanism in my talk today and to 1st

NOTE Confidence: 0.623311

00:08:17.878 --> 00:08:20.265 to introduce how we've kind of how

NOTE Confidence: 0.623311

 $00:08:20.265 \longrightarrow 00:08:22.150$ we've been thinking about this problem.

NOTE Confidence: 0.623311

00:08:22.150 --> 00:08:25.486 I want to just introduce you to this

NOTE Confidence: 0.623311

 $00:08:25.486 \longrightarrow 00:08:27.230$ canonical innate immune surveillance

NOTE Confidence: 0.623311

00:08:27.230 --> 00:08:30.310 mechanism in which C Gas shown here

NOTE Confidence: 0.623311

 $00{:}08{:}30.381 \dashrightarrow 00{:}08{:}32.505$ is they are really key player.

NOTE Confidence: 0.623311

 $00:08:32.510 \longrightarrow 00:08:35.334$ So C gas is an innate immune sensor

NOTE Confidence: 0.623311

 $00:08:35.334 \longrightarrow 00:08:38.065$ protein that is in the cytoplasm of cells

NOTE Confidence: 0.623311

 $00:08:38.065 \longrightarrow 00:08:40.909$ and it binds to double stranded DNA.

NOTE Confidence: 0.623311

 $00:08:40.910 \longrightarrow 00:08:43.278$ And the idea is that it can surveil

NOTE Confidence: 0.623311

 $00{:}08{:}43.278 \dashrightarrow 00{:}08{:}45.520$ 4 viruses and bacterial pathogens,

 $00:08:45.520 \longrightarrow 00:08:47.600$ but there's increasing evidence that

NOTE Confidence: 0.623311

 $00{:}08{:}47.600 \dashrightarrow 00{:}08{:}50.759$ C gas is also capable of surveilling

NOTE Confidence: 0.623311

00:08:50.760 --> 00:08:53.496 self DNA that's present within cells

NOTE Confidence: 0.623311

 $00:08:53.496 \longrightarrow 00:08:55.320$ within eukaryotic cells themselves.

NOTE Confidence: 0.623311

 $00:08:55.320 \longrightarrow 00:08:56.400$ So for example,

NOTE Confidence: 0.623311

 $00:08:56.400 \longrightarrow 00:08:58.560$ a distregated mitochondria can lead to

NOTE Confidence: 0.623311

 $00:08:58.560 \longrightarrow 00:09:00.722$ leaking of mitochondrial DNA into the

NOTE Confidence: 0.623311

 $00:09:00.722 \dashrightarrow 00:09:02.760$ cytoplasm which can activate C gas.

NOTE Confidence: 0.623311

00:09:02.760 --> 00:09:05.240 And today I'm going to be talking about

NOTE Confidence: 0.623311

 $00:09:05.240 \longrightarrow 00:09:07.262$ how actually the chromosomes or the

NOTE Confidence: 0.623311

 $00:09:07.262 \longrightarrow 00:09:09.621$ chromatin or DNA from the nucleus can

NOTE Confidence: 0.623311

 $00:09:09.621 \dashrightarrow 00:09:11.658$ be exposed and surveilled by C gas.

NOTE Confidence: 0.623311

00:09:11.660 --> 00:09:15.413 C gas works by when it binds to DNA.

NOTE Confidence: 0.623311

00:09:15.420 --> 00:09:16.820 Just I'm going to say very clearly,

NOTE Confidence: 0.623311

 $00:09:16.820 \longrightarrow 00:09:18.740$ when it binds to naked DNA,

 $00:09:18.740 \longrightarrow 00:09:20.952$ this drives a change and and molecules

NOTE Confidence: 0.623311

 $00:09:20.952 \dashrightarrow 00:09:23.994$ of C gas come together and they produce

NOTE Confidence: 0.623311

 $00:09:23.994 \longrightarrow 00:09:26.420$ the second messenger called C gamp.

NOTE Confidence: 0.623311

 $00:09:26.420 \longrightarrow 00:09:29.140$ But actually binding of C gas to DNA

NOTE Confidence: 0.623311

 $00:09:29.140 \longrightarrow 00:09:32.099$ does not always lead to this response.

NOTE Confidence: 0.623311

 $00:09:32.100 \longrightarrow 00:09:33.815$ And so there's regulation of this that

NOTE Confidence: 0.623311

 $00:09:33.815 \longrightarrow 00:09:35.819$ I'll talk about in more detail in a moment.

NOTE Confidence: 0.623311

00:09:35.820 --> 00:09:37.338 So just recruiting C gas somewhere

NOTE Confidence: 0.623311

 $00{:}09{:}37.338 \dashrightarrow 00{:}09{:}39.141$ does not mean that it's actually

NOTE Confidence: 0.623311

00:09:39.141 --> 00:09:40.609 producing this second messenger,

NOTE Confidence: 0.623311

 $00:09:40.610 \longrightarrow 00:09:42.416$ but the second messenger is thought to

NOTE Confidence: 0.623311

 $00:09:42.416 \longrightarrow 00:09:44.650$ be key to its downstream mechanisms.

NOTE Confidence: 0.623311

 $00:09:44.650 \longrightarrow 00:09:48.088$ The recipient of the C gamp signal is sting.

NOTE Confidence: 0.623311

00:09:48.090 --> 00:09:50.190 Sting is a membrane protein that

NOTE Confidence: 0.623311

 $00:09:50.190 \longrightarrow 00:09:52.740$ is key to the canonical signaling

NOTE Confidence: 0.623311

 $00:09:52.740 \longrightarrow 00:09:55.405$ pathway that C gas activates.

 $00:09:55.410 \longrightarrow 00:09:58.056$ And that is by driving the phosphorylation

NOTE Confidence: 0.623311

 $00:09:58.056 \longrightarrow 00:10:00.660$ of a kinase called TBK one once

NOTE Confidence: 0.623311

 $00:10:00.660 \longrightarrow 00:10:03.128$ it's traffic to the Golgi and then

NOTE Confidence: 0.623311

00:10:03.128 --> 00:10:05.282 this phosphorylates IRF 3 which is

NOTE Confidence: 0.623311

 $00:10:05.282 \longrightarrow 00:10:07.229$ a transcription factor that when

NOTE Confidence: 0.623311

 $00{:}10{:}07.229 \dashrightarrow 00{:}10{:}09.563$ phosphorylated goes into the nucleus and

NOTE Confidence: 0.623311

 $00:10:09.563 \longrightarrow 00:10:12.329$ drives interferon stimulated gene expression.

NOTE Confidence: 0.623311

 $00:10:12.330 \longrightarrow 00:10:14.367$ So that's the kind of canonical pathway.

NOTE Confidence: 0.623311

 $00:10:14.370 \longrightarrow 00:10:16.911$ There's also a non canonical roles in

NOTE Confidence: 0.623311

 $00:10:16.911 \dashrightarrow 00:10:19.186$ activating NF Kappa B signaling and

NOTE Confidence: 0.623311

 $00:10:19.186 \longrightarrow 00:10:22.514$ and any of these may in addition to

NOTE Confidence: 0.623311

 $00:10:22.514 \longrightarrow 00:10:24.768$ inflammatory genes cause apoptosis.

NOTE Confidence: 0.623311

 $00:10:24.770 \longrightarrow 00:10:26.548$ So this could be a mechanism that

NOTE Confidence: 0.623311

 $00:10:26.548 \longrightarrow 00:10:27.690$ can drive cell death,

NOTE Confidence: 0.623311

 $00:10:27.690 \longrightarrow 00:10:30.040$ although we really don't understand

 $00:10:30.040 \longrightarrow 00:10:31.450$ this terribly well.

NOTE Confidence: 0.623311

 $00:10:31.450 \longrightarrow 00:10:32.056$ In addition,

NOTE Confidence: 0.623311

 $00:10:32.056 \longrightarrow 00:10:33.874$ sting is also involved in some

NOTE Confidence: 0.623311

 $00:10:33.874 \longrightarrow 00:10:35.825$ other non canonical mechanisms that

NOTE Confidence: 0.623311

00:10:35.825 --> 00:10:37.970 could also precipitate cell death,

NOTE Confidence: 0.5575379

00:10:37.970 --> 00:10:39.858 which as I mentioned is what I'm going

NOTE Confidence: 0.5575379

 $00:10:39.858 \longrightarrow 00:10:42.485$ to be focusing on today and part of this

NOTE Confidence: 0.5575379

 $00:10:42.485 \longrightarrow 00:10:44.569$ actually involves the autophagy mechanisms.

NOTE Confidence: 0.5575379

00:10:44.570 --> 00:10:47.108 There appears to be some autophagy

NOTE Confidence: 0.5575379

00:10:47.108 --> 00:10:48.800 dependent cell death mechanism

NOTE Confidence: 0.5575379

 $00:10:48.873 \longrightarrow 00:10:51.177$ downstream of sting and this is

NOTE Confidence: 0.5575379

 $00:10:51.177 \longrightarrow 00:10:53.398$ independent perhaps of this canonical

NOTE Confidence: 0.5575379

 $00:10:53.398 \longrightarrow 00:10:55.850$ interferon stimulated gene signaling.

NOTE Confidence: 0.5575379

 $00:10:55.850 \longrightarrow 00:10:57.994$ And so while I'm going to focus kind

NOTE Confidence: 0.5575379

 $00:10:57.994 \longrightarrow 00:11:00.330$ of on these upstream steps today,

NOTE Confidence: 0.5575379

 $00:11:00.330 \longrightarrow 00:11:02.722$ we really don't know what the key downstream

 $00:11:02.722 \longrightarrow 00:11:04.819$ steps are in terms of which signaling

NOTE Confidence: 0.5575379

 $00{:}11{:}04.819 \dashrightarrow 00{:}11{:}07.370$ pathways are going to be most most relevant.

NOTE Confidence: 0.5575379

00:11:07.370 --> 00:11:09.786 And so that's really kind of ongoing work.

NOTE Confidence: 0.5575379

 $00{:}11{:}09.790 \dashrightarrow 00{:}11{:}11.722$ And I'll just close this slide

NOTE Confidence: 0.5575379

 $00:11:11.722 \longrightarrow 00:11:13.337$ by highlighting that actually AC

NOTE Confidence: 0.5575379

 $00:11:13.337 \longrightarrow 00:11:14.945$ gas is a really ancient protein.

NOTE Confidence: 0.5575379

 $00:11:14.950 \longrightarrow 00:11:16.492$ It actually goes all the way

NOTE Confidence: 0.5575379

 $00:11:16.492 \longrightarrow 00:11:17.263$ back to prokaryotes.

NOTE Confidence: 0.5575379

 $00{:}11{:}17.270 --> 00{:}11{:}19.566$ And so it's played a role in

NOTE Confidence: 0.5575379

 $00:11:19.566 \longrightarrow 00:11:21.004$ surveilling for eign DNA long

NOTE Confidence: 0.5575379

 $00:11:21.004 \longrightarrow 00:11:22.949$ before the innate immune system.

NOTE Confidence: 0.5575379

00:11:22.950 --> 00:11:24.028 And so that kind of makes sense,

NOTE Confidence: 0.5575379

00:11:24.030 --> 00:11:25.530 this idea that it's actually

NOTE Confidence: 0.5575379

 $00:11:25.530 \longrightarrow 00:11:26.730$ multiple signaling pathways that

NOTE Confidence: 0.5575379

 $00:11:26.730 \longrightarrow 00:11:28.508$ lie downstream of C gas activation.

00:11:30.750 --> 00:11:33.242 So. So how do we get thinking

NOTE Confidence: 0.5958521

00:11:33.242 --> 00:11:34.310 about innate immunity?

NOTE Confidence: 0.5958521

 $00:11:34.310 \longrightarrow 00:11:36.950$ There's abundant evidence in the

NOTE Confidence: 0.5958521

 $00:11:36.950 \longrightarrow 00:11:40.110$ literature that HR defects on this.

NOTE Confidence: 0.5958521

 $00:11:40.110 \longrightarrow 00:11:42.147$ In this particular case on the left,

NOTE Confidence: 0.5958521

 $00:11:42.150 \longrightarrow 00:11:43.050$ we're looking at bracket.

NOTE Confidence: 0.5958521

 $00:11:43.050 \longrightarrow 00:11:43.950$ In both these cases,

NOTE Confidence: 0.5958521

00:11:43.950 --> 00:11:46.290 we're looking at bracket to knock

NOTE Confidence: 0.5958521

 $00:11:46.290 \longrightarrow 00:11:48.538$ down models that HR defects are

NOTE Confidence: 0.5958521

00:11:48.538 --> 00:11:50.373 sufficient to trigger an innate

NOTE Confidence: 0.5958521

 $00{:}11{:}50.373 \dashrightarrow 00{:}11{:}53.157$ immune response and this is a response

NOTE Confidence: 0.5958521

00:11:53.157 --> 00:11:55.163 that's actually further pushed by

NOTE Confidence: 0.5958521

 $00{:}11{:}55.163 \dashrightarrow 00{:}11{:}57.008$ the addition of PARP inhibitors.

NOTE Confidence: 0.5958521

 $00{:}11{:}57.010 \dashrightarrow 00{:}11{:}58.501$ So let me just walk you through

NOTE Confidence: 0.5958521

 $00:11:58.501 \longrightarrow 00:11:59.649$ the example of this data.

NOTE Confidence: 0.5958521

00:11:59.650 --> 00:12:00.274 As I mentioned,

 $00{:}12{:}00.274 \dashrightarrow 00{:}12{:}01.730$ these are BRCA 2 knock down cells.

NOTE Confidence: 0.5958521

 $00:12:01.730 \longrightarrow 00:12:03.330$ So with doxycycline we have

NOTE Confidence: 0.5958521

 $00:12:03.330 \longrightarrow 00:12:05.213$ suppression A BRCA 2 expression and

NOTE Confidence: 0.5958521

 $00:12:05.213 \longrightarrow 00:12:06.802$ you can see that there's a gain

NOTE Confidence: 0.5958521

 $00{:}12{:}06.802 \dashrightarrow 00{:}12{:}08.796$ in IRF 3 phosphorylation which is

NOTE Confidence: 0.5958521

 $00:12:08.796 \longrightarrow 00:12:10.641$ one of that canonical downstream

NOTE Confidence: 0.5958521

 $00:12:10.641 \longrightarrow 00:12:12.446$ outcomes of C gas signaling.

NOTE Confidence: 0.5958521

 $00:12:12.446 \longrightarrow 00:12:14.600$ And this also leads in this

NOTE Confidence: 0.5958521

 $00:12:14.682 \longrightarrow 00:12:17.127$ model to Stat 1 phosphorylation.

NOTE Confidence: 0.5958521

 $00:12:17.130 \longrightarrow 00:12:19.299$ And a similar thing is seen in the in

NOTE Confidence: 0.5958521

 $00:12:19.299 \longrightarrow 00:12:21.889$ in breast cancer cells in this 231 model.

NOTE Confidence: 0.5958521

00:12:21.890 --> 00:12:22.335 Again,

NOTE Confidence: 0.5958521

 $00:12:22.335 \longrightarrow 00:12:25.005$ this is a artificial system of

NOTE Confidence: 0.5958521

00:12:25.005 --> 00:12:27.488 the knock down of BRCA 2 with

NOTE Confidence: 0.5958521

 $00:12:27.488 \longrightarrow 00:12:28.928$ regards to how PARP inhibitors

 $00:12:28.928 \longrightarrow 00:12:30.080$ then synergize with this.

NOTE Confidence: 0.5958521

 $00:12:30.080 \longrightarrow 00:12:32.078$ I've just pulled out this data

NOTE Confidence: 0.5958521

 $00:12:32.080 \longrightarrow 00:12:33.636$ from BRCA 1 deficient,

NOTE Confidence: 0.5958521

00:12:33.636 --> 00:12:35.970 BRCA 1 deficient breast cancer line

NOTE Confidence: 0.5958521

 $00:12:36.041 \longrightarrow 00:12:37.931$ that's commonly used in the lab

NOTE Confidence: 0.5958521

 $00{:}12{:}37.931 \dashrightarrow 00{:}12{:}40.268$ to study a BRCA 1 deficiency and

NOTE Confidence: 0.5958521

 $00:12:40.268 \longrightarrow 00:12:42.613$ this is now in a xenograft model.

NOTE Confidence: 0.5958521

 $00:12:42.620 \longrightarrow 00:12:44.654$ So these are actually now xenographs

NOTE Confidence: 0.5958521

 $00{:}12{:}44.654 \dashrightarrow 00{:}12{:}47.200$ looking at how PARP inhibitors affect

NOTE Confidence: 0.5958521

 $00:12:47.200 \longrightarrow 00:12:49.460$ interferon stimulated gene expression.

NOTE Confidence: 0.5958521

 $00{:}12{:}49.460 \longrightarrow 00{:}12{:}51.556$ And you can see that all of these

NOTE Confidence: 0.5958521

 $00{:}12{:}51.556 \dashrightarrow 00{:}12{:}53.427$ genes that are downstream of C

NOTE Confidence: 0.5958521

 $00:12:53.427 \longrightarrow 00:12:55.353$ gas activation are up regulated in

NOTE Confidence: 0.5958521

 $00:12:55.422 \longrightarrow 00:12:57.307$ the with PARP inhibitor treatment

NOTE Confidence: 0.5958521

 $00:12:57.307 \longrightarrow 00:12:58.815$ in the xenograft model.

NOTE Confidence: 0.5958521

 $00:12:58.820 \longrightarrow 00:13:00.745$ So there's been these observations

00:13:00.745 --> 00:13:02.816 of innate immune stimulation in

NOTE Confidence: 0.5958521

00:13:02.816 --> 00:13:05.564 the context of HR deficient cells

NOTE Confidence: 0.5958521

00:13:05.564 --> 00:13:07.925 that's further pushed by PARP

NOTE Confidence: 0.5958521

 $00:13:07.925 \longrightarrow 00:13:09.820$ inhibitors in a number of cases.

NOTE Confidence: 0.5958521

 $00:13:09.820 \longrightarrow 00:13:13.019$ But what is the cause of this?

NOTE Confidence: 0.5958521

 $00:13:13.020 \longrightarrow 00:13:13.305$ Right.

NOTE Confidence: 0.5958521

 $00:13:13.305 \longrightarrow 00:13:14.160$ So what the,

NOTE Confidence: 0.5958521

 $00:13:14.160 \longrightarrow 00:13:15.300$ what the signal is,

NOTE Confidence: 0.5958521

00:13:15.300 --> 00:13:18.092 How we go from HR deficiency to innate

NOTE Confidence: 0.5958521

 $00:13:18.092 \longrightarrow 00:13:20.380$ immune signaling has been really unclear.

NOTE Confidence: 0.5958521

 $00{:}13{:}20.380 \dashrightarrow 00{:}13{:}22.151$ One other thing that I want to

NOTE Confidence: 0.5958521

 $00:13:22.151 \longrightarrow 00:13:23.872$ just alert you to is that when

NOTE Confidence: 0.5958521

 $00{:}13{:}23.872 \dashrightarrow 00{:}13{:}25.620$ there is an HR defect in cells,

NOTE Confidence: 0.5958521

00:13:25.620 --> 00:13:27.640 one of the consequences is

NOTE Confidence: 0.5958521

 $00:13:27.640 \longrightarrow 00:13:29.256$ that we accumulate cells,

 $00:13:29.260 \longrightarrow 00:13:30.253$ accumulate mitotic errors.

NOTE Confidence: 0.5958521

00:13:30.253 --> 00:13:32.570 So this is just one paper I've

NOTE Confidence: 0.5958521

00:13:32.638 --> 00:13:34.208 pulled out from Steve West,

NOTE Confidence: 0.5958521

 $00:13:34.210 \longrightarrow 00:13:36.254$ actually from more than a decade or

NOTE Confidence: 0.5958521

 $00:13:36.254 \longrightarrow 00:13:38.049$ probably more than 15 years ago now

NOTE Confidence: 0.5958521

 $00:13:38.050 \longrightarrow 00:13:40.170$ where it's been recognized for a long time.

NOTE Confidence: 0.5958521

00:13:40.170 --> 00:13:42.485 If there are challenges in

NOTE Confidence: 0.5958521

00:13:42.485 --> 00:13:44.800 maintaining integrity of the genome,

NOTE Confidence: 0.5958521

00:13:44.800 --> 00:13:46.948 then in mitosis you have these

NOTE Confidence: 0.5958521

 $00:13:46.948 \longrightarrow 00:13:48.380$ intermediates that lead to

NOTE Confidence: 0.5958521

 $00{:}13{:}48.446 \dashrightarrow 00{:}13{:}50.516$ persistent bridges of DNA and DNA

NOTE Confidence: 0.5958521

00:13:50.516 --> 00:13:52.720 breaks and these kind of breakage,

NOTE Confidence: 0.5958521

 $00:13:52.720 \longrightarrow 00:13:54.910$ fusion breakage cycles that can

NOTE Confidence: 0.5958521

00:13:54.910 --> 00:13:57.879 actually be precipitated by an HR defect,

NOTE Confidence: 0.5958521

 $00:13:57.880 \longrightarrow 00:14:00.316$ by a radiation, by taxol treatments.

NOTE Confidence: 0.5958521

 $00:14:00.320 \longrightarrow 00:14:01.730$ You can arrive at these kind

 $00:14:01.730 \longrightarrow 00:14:02.960$ of structures in many ways.

NOTE Confidence: 0.5958521

00:14:02.960 --> 00:14:04.418 But I would say HR deficiency

NOTE Confidence: 0.5958521

 $00:14:04.418 \longrightarrow 00:14:06.406$ is not the way that most people

NOTE Confidence: 0.5958521

00:14:06.406 --> 00:14:08.006 have thought about arriving at

NOTE Confidence: 0.5958521

 $00:14:08.006 \longrightarrow 00:14:09.480$ these kind of structures.

NOTE Confidence: 0.7051682

00:14:11.530 --> 00:14:13.245 I also just want to remind you,

NOTE Confidence: 0.7051682

00:14:13.250 --> 00:14:15.410 'cause I'm a cell biologist,

NOTE Confidence: 0.7051682

00:14:15.410 --> 00:14:18.410 that actually the nuclear envelope,

NOTE Confidence: 0.7051682

 $00:14:18.410 \longrightarrow 00:14:20.432$ not only the nuclear envelope is

NOTE Confidence: 0.7051682

00:14:20.432 --> 00:14:22.440 breaks down every cell cycle. OK.

NOTE Confidence: 0.7051682

 $00{:}14{:}22.440 \dashrightarrow 00{:}14{:}24.510$ So I just wanted to keep this in your

NOTE Confidence: 0.7051682

 $00{:}14{:}24.571 \dashrightarrow 00{:}14{:}26.643$ mind too as I talk about this because

NOTE Confidence: 0.7051682

 $00:14:26.650 \longrightarrow 00:14:29.114$ I just told you there's an innate

NOTE Confidence: 0.7051682

 $00:14:29.114 \longrightarrow 00:14:30.822$ immune surveillance protein that is

NOTE Confidence: 0.7051682

 $00:14:30.822 \longrightarrow 00:14:32.887$ looking for DNA and yet every mitosis,

 $00:14:32.890 \longrightarrow 00:14:35.529$ the chromosomes are exposed to the cytoplasm.

NOTE Confidence: 0.7051682

 $00:14:35.530 \longrightarrow 00:14:37.970$ So we we know that that's not sufficient

NOTE Confidence: 0.7051682

 $00:14:37.970 \longrightarrow 00:14:40.258$ to drive an innate immune response.

NOTE Confidence: 0.7051682

 $00:14:40.260 \longrightarrow 00:14:42.186$ So we know in mitosis there

NOTE Confidence: 0.7051682

 $00:14:42.186 \longrightarrow 00:14:43.860$ are mechanisms to down rate,

NOTE Confidence: 0.7051682

 $00:14:43.860 \longrightarrow 00:14:45.565$ down regulate this surveillance mechanisms

NOTE Confidence: 0.7051682

 $00{:}14{:}45.565 \dashrightarrow 00{:}14{:}48.215$ are a way to shield these chromosomes

NOTE Confidence: 0.7051682

00:14:48.215 --> 00:14:50.420 from actually activating this pathway.

NOTE Confidence: 0.7051682

 $00:14:50.420 \longrightarrow 00:14:52.725$ And so these recombination intermediates

NOTE Confidence: 0.7051682

00:14:52.725 --> 00:14:55.030 are interesting in part because

NOTE Confidence: 0.7051682

 $00{:}14{:}55.103 \dashrightarrow 00{:}14{:}57.215$ they don't just occur in mitosis,

NOTE Confidence: 0.7051682

 $00{:}14{:}57.220 \to 00{:}14{:}59.980$ they persist into the following interface.

NOTE Confidence: 0.7051682

 $00:14:59.980 \longrightarrow 00:15:01.688$ And that's going to be important here

NOTE Confidence: 0.7051682

 $00:15:01.688 \longrightarrow 00:15:03.550$ because we need to get to the next

NOTE Confidence: 0.7051682

 $00:15:03.550 \longrightarrow 00:15:05.408$ interphase in order for this innate immune

NOTE Confidence: 0.7051682

 $00:15:05.408 \longrightarrow 00:15:07.218$ surveillance mechanism to be reactivated.

 $00:15:09.330 \longrightarrow 00:15:11.556$ And indeed, there is also evidence in

NOTE Confidence: 0.44108427

 $00:15:11.556 \longrightarrow 00:15:13.621$ the literature that for PARP inhibitors

NOTE Confidence: 0.44108427

 $00:15:13.621 \longrightarrow 00:15:15.366$ to actually induce cell death,

NOTE Confidence: 0.44108427

 $00:15:15.370 \longrightarrow 00:15:17.848$ cells have to transit through mitosis.

NOTE Confidence: 0.44108427

00:15:17.850 --> 00:15:19.845 This is additional evidence that you know,

NOTE Confidence: 0.44108427

00:15:19.850 --> 00:15:22.034 unlike P53, which as I mentioned

NOTE Confidence: 0.44108427

 $00:15:22.034 \longrightarrow 00:15:23.490$ is acting an interphase,

NOTE Confidence: 0.44108427

 $00:15:23.490 \longrightarrow 00:15:25.650$ that it is essential for cells to go

NOTE Confidence: 0.44108427

 $00{:}15{:}25.650 \dashrightarrow 00{:}15{:}27.168$ through mitosis for PARP inhibitors

NOTE Confidence: 0.44108427

 $00:15:27.168 \longrightarrow 00:15:29.004$ to actually cause the cell death.

NOTE Confidence: 0.44108427

 $00{:}15{:}29.010 \dashrightarrow 00{:}15{:}30.714$ This is actually some work again

NOTE Confidence: 0.44108427

 $00:15:30.714 \longrightarrow 00:15:32.582$ in a xenograph model and the

NOTE Confidence: 0.44108427

 $00{:}15{:}32.582 \dashrightarrow 00{:}15{:}33.938$ absence of functional bracket,

NOTE Confidence: 0.44108427

 $00:15:33.940 \longrightarrow 00:15:36.060$ two and cells treated with a laparib and

NOTE Confidence: 0.44108427

 $00:15:36.060 \longrightarrow 00:15:38.376$ what you can see is kind of these events.

 $00:15:38.380 \longrightarrow 00:15:42.133$ So we have a cell that is likely in G2,

NOTE Confidence: 0.44108427

00:15:42.133 --> 00:15:43.777 it goes into mitosis.

NOTE Confidence: 0.44108427

 $00:15:43.780 \longrightarrow 00:15:45.820$ You can see this is an this is an anaphase.

NOTE Confidence: 0.44108427

 $00:15:45.820 \longrightarrow 00:15:48.256$ So there are anaphase bridges here and

NOTE Confidence: 0.44108427

 $00:15:48.256 \longrightarrow 00:15:50.903$ actually most cells have some degree of

NOTE Confidence: 0.44108427

 $00:15:50.903 \longrightarrow 00:15:52.823$ entanglement of chromosomes in anaphase

NOTE Confidence: 0.44108427

 $00:15:52.823 \longrightarrow 00:15:55.495$ that are going to be resolved dynamically.

NOTE Confidence: 0.44108427

00:15:55.500 --> 00:15:57.738 However, if that does not happen,

NOTE Confidence: 0.44108427

 $00:15:57.740 \longrightarrow 00:16:00.026$ if cells are unable to resolve

NOTE Confidence: 0.44108427

 $00:16:00.026 \longrightarrow 00:16:01.550$ these entanglements of chromosomes,

NOTE Confidence: 0.44108427

 $00:16:01.550 \longrightarrow 00:16:03.860$ So what happens is that these cells

NOTE Confidence: 0.44108427

 $00:16:03.860 \longrightarrow 00:16:05.750$ will biochemically come out of mitosis.

NOTE Confidence: 0.44108427

 $00:16:05.750 \longrightarrow 00:16:07.534$ So they're back in interface and you can

NOTE Confidence: 0.44108427

 $00:16:07.534 \longrightarrow 00:16:09.667$ see that because the nucleus is intact again.

NOTE Confidence: 0.44108427

 $00:16:09.670 \longrightarrow 00:16:11.110$ But what you can see in this cell is

NOTE Confidence: 0.44108427

 $00:16:11.110 \longrightarrow 00:16:12.550$ you now have a doublet essentially,

00:16:12.550 --> 00:16:12.856 right?

NOTE Confidence: 0.44108427

 $00:16:12.856 \longrightarrow 00:16:14.998$ You have a cell that actually failed

NOTE Confidence: 0.44108427

00:16:14.998 --> 00:16:16.929 in cytokinesis and it failed because

NOTE Confidence: 0.44108427

00:16:16.929 --> 00:16:18.509 you couldn't actually generate 2

NOTE Confidence: 0.44108427

 $00:16:18.509 \longrightarrow 00:16:20.174$ cells because there was bridging

NOTE Confidence: 0.44108427

 $00:16:20.174 \longrightarrow 00:16:21.784$ DNA between these two cells.

NOTE Confidence: 0.44108427

 $00:16:21.790 \longrightarrow 00:16:23.350$ But the cell has biochemically

NOTE Confidence: 0.44108427

 $00{:}16{:}23.350 \longrightarrow 00{:}16{:}25.492$ come back into interface and so we

NOTE Confidence: 0.44108427

 $00{:}16{:}25.492 \dashrightarrow 00{:}16{:}27.076$ can imagine that the innate immune

NOTE Confidence: 0.44108427

 $00:16:27.076 \longrightarrow 00:16:28.350$ system is active again.

NOTE Confidence: 0.44108427

 $00:16:28.350 \longrightarrow 00:16:29.614$ And the question is,

NOTE Confidence: 0.44108427

 $00{:}16{:}29.614 \dashrightarrow 00{:}16{:}31.927$ is this somehow aware of the fact

NOTE Confidence: 0.44108427

 $00{:}16{:}31.927 \dashrightarrow 00{:}16{:}34.027$ that this is a defective mitosis?

NOTE Confidence: 0.44108427

00:16:34.030 --> 00:16:35.703 Is there some mechanism to know that

NOTE Confidence: 0.44108427

 $00:16:35.703 \longrightarrow 00:16:37.429$ and that this would ultimately Dr.

 $00:16:37.430 \longrightarrow 00:16:38.725$ the cell death and that's what we

NOTE Confidence: 0.44108427

 $00{:}16{:}38.725 \dashrightarrow 00{:}16{:}40.133$ see happening on the right with

NOTE Confidence: 0.44108427

 $00{:}16{:}40.133 \dashrightarrow 00{:}16{:}40.946$ this chromosome condensation.

NOTE Confidence: 0.9336245

00:16:43.590 --> 00:16:45.676 I just want to highlight that this

NOTE Confidence: 0.9336245

 $00:16:45.676 \longrightarrow 00:16:47.630$ is not really new information,

NOTE Confidence: 0.9336245

 $00:16:47.630 \longrightarrow 00:16:48.710$ so we can go back.

NOTE Confidence: 0.9336245

 $00:16:48.710 \longrightarrow 00:16:52.374$ This is from 2001 and there has been

NOTE Confidence: 0.9336245

 $00:16:52.374 \longrightarrow 00:16:56.290$ long been the understanding that these,

NOTE Confidence: 0.9336245

 $00:16:56.290 \longrightarrow 00:16:57.770$ the changes in nuclear shape,

NOTE Confidence: 0.9336245

 $00:16:57.770 \longrightarrow 00:17:00.930$ nuclear atypia which are used all the time

NOTE Confidence: 0.9336245

 $00{:}17{:}00.930 \dashrightarrow 00{:}17{:}03.287$ by pathologists to diagnose and stays,

NOTE Confidence: 0.9336245

 $00:17:03.290 \longrightarrow 00:17:06.510$ cancers are tied to these kind of

NOTE Confidence: 0.9336245

 $00{:}17{:}06.510 \dashrightarrow 00{:}17{:}08.810$ aberrations that I've mentioned.

NOTE Confidence: 0.9336245

00:17:08.810 --> 00:17:10.736 So I just want to you know that they've

NOTE Confidence: 0.9336245

00:17:10.736 --> 00:17:12.409 been called many things over time.

NOTE Confidence: 0.9336245

00:17:12.410 --> 00:17:14.480 What I want to point out is that all

 $00:17:14.480 \longrightarrow 00:17:16.998$ of these kind of mitotic errors that

NOTE Confidence: 0.9336245

 $00{:}17{:}16.998 \dashrightarrow 00{:}17{:}18.963$ are typically associated with altered

NOTE Confidence: 0.9336245

00:17:18.963 --> 00:17:21.270 nuclear shape are all things that we're

NOTE Confidence: 0.9336245

00:17:21.270 --> 00:17:22.750 observing in interphase cells again,

NOTE Confidence: 0.9336245

 $00:17:22.750 \longrightarrow 00:17:24.458$ so not in cells just in mitosis

NOTE Confidence: 0.9336245

 $00:17:24.458 \longrightarrow 00:17:25.910$ that have an anaphase bridge

NOTE Confidence: 0.9336245

 $00:17:25.910 \longrightarrow 00:17:27.590$ but they're in in interphase.

NOTE Confidence: 0.9336245

 $00:17:27.590 \longrightarrow 00:17:29.970$ So these were called what the structures

NOTE Confidence: 0.9336245

 $00:17:29.970 \longrightarrow 00:17:32.211$ that I just described that you can

NOTE Confidence: 0.9336245

 $00:17:32.211 \longrightarrow 00:17:34.402$ have persistent DNA that then is still

NOTE Confidence: 0.9336245

 $00:17:34.402 \longrightarrow 00:17:36.208$ there as cells reform their nucleus

NOTE Confidence: 0.9336245

00:17:36.208 --> 00:17:38.310 and go into the next cell cycle.

NOTE Confidence: 0.9336245

 $00:17:38.310 \longrightarrow 00:17:39.598$ And this, you know,

NOTE Confidence: 0.9336245

00:17:39.598 --> 00:17:41.530 25 years ago were called inter

NOTE Confidence: 0.9336245

 $00:17:41.598 \longrightarrow 00:17:42.630$ nuclear strings,

 $00{:}17{:}42.630 \dashrightarrow 00{:}17{:}45.180$ but you can also have micronuclei.

NOTE Confidence: 0.9336245

 $00{:}17{:}45.180 \to 00{:}17{:}46.800$ And I just want to point out one of

NOTE Confidence: 0.9336245

 $00{:}17{:}46.800 \dashrightarrow 00{:}17{:}48.195$ the differences between these two

NOTE Confidence: 0.9336245

 $00:17:48.195 \longrightarrow 00:17:49.941$ types of structures is that these

NOTE Confidence: 0.9336245

 $00:17:49.992 \longrightarrow 00:17:51.422$ inter nuclear strings are because

NOTE Confidence: 0.9336245

 $00:17:51.422 \longrightarrow 00:17:53.277$ of an inability to segregate the

NOTE Confidence: 0.9336245

 $00:17:53.277 \longrightarrow 00:17:54.945$ chromosomes because the chromosomes

NOTE Confidence: 0.9336245

 $00:17:54.945 \longrightarrow 00:17:56.613$ are literally entangled and

NOTE Confidence: 0.9336245

 $00{:}17{:}56.613 \dashrightarrow 00{:}17{:}58.500$ cannot be physically segregated.

NOTE Confidence: 0.9336245

00:17:58.500 --> 00:18:01.224 Micronuclei are different and that they

NOTE Confidence: 0.9336245

00:18:01.224 --> 00:18:03.860 predominantly arise from lagging chromosomes,

NOTE Confidence: 0.9336245

 $00:18:03.860 \longrightarrow 00:18:05.405$ acentrosomal chromosome fragments

NOTE Confidence: 0.9336245

00:18:05.405 --> 00:18:07.980 and perhaps extra chromosomal DNA,

NOTE Confidence: 0.9336245

00:18:07.980 --> 00:18:08.218 right.

NOTE Confidence: 0.9336245

 $00:18:08.218 \longrightarrow 00:18:09.646$ So they really are a different

NOTE Confidence: 0.9336245

 $00:18:09.646 \longrightarrow 00:18:11.011$ structure than these two structures

 $00:18:11.011 \longrightarrow 00:18:12.215$ are actually quite different.

NOTE Confidence: 0.9336245

 $00:18:12.220 \longrightarrow 00:18:14.266$ And I'll come back to that.

NOTE Confidence: 0.9336245

 $00:18:14.270 \longrightarrow 00:18:15.470$ The consequence of this can

NOTE Confidence: 0.9336245

 $00:18:15.470 \longrightarrow 00:18:16.430$ lead to BI nucleation.

NOTE Confidence: 0.9336245

 $00{:}18{:}16.430 \dashrightarrow 00{:}18{:}18.453$ That's what I just showed you in

NOTE Confidence: 0.9336245

 $00:18:18.453 \longrightarrow 00:18:19.790$ that particular bracket 2 model.

NOTE Confidence: 0.9336245

00:18:19.790 --> 00:18:21.390 And I won't really talk about it today,

NOTE Confidence: 0.9336245

 $00:18:21.390 \longrightarrow 00:18:23.700$ but you can also get nuclear ruptures

NOTE Confidence: 0.9336245

 $00:18:23.700 \longrightarrow 00:18:26.189$ that happen in interface due to a

NOTE Confidence: 0.9336245

00:18:26.189 --> 00:18:27.984 defect in the nuclear integrity.

NOTE Confidence: 0.9336245

 $00:18:27.990 \longrightarrow 00:18:29.334$ But that is not an event that's

NOTE Confidence: 0.9336245

 $00:18:29.334 \longrightarrow 00:18:29.910$ tied to mitosis.

NOTE Confidence: 0.9336245

00:18:29.910 --> 00:18:31.350 So I'm not going to talk

NOTE Confidence: 0.9336245

 $00:18:31.350 \longrightarrow 00:18:32.367$ more about that today.

NOTE Confidence: 0.933624500:18:32.367 --> 00:18:32.664 OK.

 $00:18:32.664 \longrightarrow 00:18:35.040$ So let me just show you kind of

NOTE Confidence: 0.9336245

00:18:35.113 --> 00:18:37.128 the amazing cell biology that

NOTE Confidence: 0.9336245

 $00:18:37.128 \longrightarrow 00:18:39.143$ is tied and specifically to

NOTE Confidence: 0.9336245

 $00:18:39.218 \longrightarrow 00:18:41.270$ these persistent DNA bridges.

NOTE Confidence: 0.9336245

 $00:18:41.270 \longrightarrow 00:18:43.790$ So here I'm showing you a movie.

NOTE Confidence: 0.9336245

 $00:18:43.790 \longrightarrow 00:18:45.506$ These are cells that are expressing

NOTE Confidence: 0.9336245

 $00{:}18{:}45.506 \dashrightarrow 00{:}18{:}46.650$ a nuclear localization signal

NOTE Confidence: 0.9336245

 $00:18:46.699 \longrightarrow 00:18:48.109$ tagged to a fluorescent protein.

NOTE Confidence: 0.9336245

 $00{:}18{:}48.110 \dashrightarrow 00{:}18{:}50.228$ So it's exclusively in the nucleus.

NOTE Confidence: 0.9336245

 $00:18:50.230 \longrightarrow 00:18:52.150$ And we're going to look at this cell

NOTE Confidence: 0.9336245

00:18:52.150 --> 00:18:54.050 that is just going through mitosis,

NOTE Confidence: 0.9336245

 $00:18:54.050 \longrightarrow 00:18:55.190$ if it will.

NOTE Confidence: 0.9209971

 $00:18:57.830 \longrightarrow 00:18:59.478$ Maybe I'm not allowed to do that while

NOTE Confidence: 0.9209971

 $00{:}18{:}59.478 \dashrightarrow 00{:}19{:}01.350$ I have the pointer on, Is that possible?

NOTE Confidence: 0.9209971

 $00:19:05.310 \longrightarrow 00:19:07.425$ Yep, that's possible.

NOTE Confidence: 0.9209971

 $00:19:07.425 \longrightarrow 00:19:09.670$ OK, so we're gonna look at the cell

 $00:19:09.670 \longrightarrow 00:19:11.289$ that is trying to transit mitosis.

NOTE Confidence: 0.9209971

 $00{:}19{:}11.290 --> 00{:}19{:}12.730$ We're gonna see it come out of mitosis.

NOTE Confidence: 0.9209971

 $00:19:12.730 \longrightarrow 00:19:14.020$ These cells are still linked by

NOTE Confidence: 0.9209971

00:19:14.020 --> 00:19:15.649 one of these DNA bridges and you

NOTE Confidence: 0.9209971

 $00:19:15.649 \longrightarrow 00:19:17.083$ can see there are these flashes,

NOTE Confidence: 0.9209971

 $00{:}19{:}17.090 \dashrightarrow 00{:}19{:}18.460$ there are these transient ruptures

NOTE Confidence: 0.9209971

 $00:19:18.460 \longrightarrow 00:19:20.473$ of the nucleus and all the nuclear

NOTE Confidence: 0.9209971

 $00:19:20.473 \longrightarrow 00:19:21.943$ localization signal will spill out

NOTE Confidence: 0.9209971

 $00:19:21.943 \longrightarrow 00:19:23.978$ and then there seems to be some repair

NOTE Confidence: 0.9209971

 $00:19:23.978 \longrightarrow 00:19:25.822$ of that event and then the the

NOTE Confidence: 0.9209971

 $00{:}19{:}25.822 \dashrightarrow 00{:}19{:}27.286$ protein can start to accumulate again.

NOTE Confidence: 0.9209971

 $00:19:27.290 \longrightarrow 00:19:30.076$ So it's kind of these cycles of

NOTE Confidence: 0.9209971

 $00{:}19{:}30.076 \dashrightarrow 00{:}19{:}32.490$ ruptures and then repair events.

NOTE Confidence: 0.9209971

 $00:19:32.490 \longrightarrow 00:19:34.290$ So this is just looking in this case,

NOTE Confidence: 0.9209971

 $00:19:34.290 \longrightarrow 00:19:37.050$ this is actually a model where there's

 $00:19:37.050 \longrightarrow 00:19:39.288$ a dicentric chromosome, however one.

NOTE Confidence: 0.9209971

 $00:19:39.288 \longrightarrow 00:19:41.451$ So one of the questions is what's

NOTE Confidence: 0.9209971

 $00:19:41.451 \longrightarrow 00:19:43.561$ the consequence of this in nate

NOTE Confidence: 0.9209971

 $00:19:43.561 \longrightarrow 00:19:45.293$ immune surveillance mechanism when

NOTE Confidence: 0.9209971

 $00:19:45.293 \longrightarrow 00:19:47.587$ you have one of these ruptures.

NOTE Confidence: 0.9209971

 $00:19:47.590 \longrightarrow 00:19:49.366$ So these kind of transient ruptures

NOTE Confidence: 0.9209971

00:19:49.366 --> 00:19:50.794 of the nuclear envelopes, right.

NOTE Confidence: 0.9209971

 $00:19:50.794 \longrightarrow 00:19:52.746$ So the nucleus, we've come out of mitosis,

NOTE Confidence: 0.9209971

 $00:19:52.750 \dashrightarrow 00:19:55.830$ it should be intact, but it's it's unstable.

NOTE Confidence: 0.9209971

 $00:19:55.830 \longrightarrow 00:19:57.958$ And so here I'm going to show

NOTE Confidence: 0.9209971

 $00:19:57.958 \longrightarrow 00:19:58.870$ you similarly cells,

NOTE Confidence: 0.9209971

 $00:19:58.870 \longrightarrow 00:20:01.990$ but these cells are actually now

NOTE Confidence: 0.9209971

 $00:20:01.990 \longrightarrow 00:20:03.725$ expressing AC gas that's tagged and

NOTE Confidence: 0.9209971

 $00:20:03.725 \longrightarrow 00:20:05.840$ that's going to be in this panel here.

NOTE Confidence: 0.9209971

00:20:05.840 --> 00:20:07.149 And I just want to again point

NOTE Confidence: 0.9209971

 $00:20:07.149 \longrightarrow 00:20:08.558$ out this is not just anaphase.

 $00:20:08.560 \longrightarrow 00:20:10.120$ This is far after anaphase.

NOTE Confidence: 0.9209971

 $00:20:10.120 \longrightarrow 00:20:11.240$ These cells have this bridge.

NOTE Confidence: 0.9209971

00:20:11.240 --> 00:20:13.520 They're trying to break their DNA

NOTE Confidence: 0.9209971

00:20:13.520 --> 00:20:15.554 and and segregate it, right,

NOTE Confidence: 0.9209971

 $00{:}20{:}15.554 \dashrightarrow 00{:}20{:}16.958$ Not break it, but segregate it.

NOTE Confidence: 0.9209971

00:20:16.960 --> 00:20:18.731 And what I hope you can appreciate

NOTE Confidence: 0.9209971

 $00:20:18.731 \longrightarrow 00:20:20.344$ is that late in this movie,

NOTE Confidence: 0.9209971

 $00:20:20:344 \longrightarrow 00:20:22.727$ all of a sudden what we see is

NOTE Confidence: 0.9209971

 $00:20:22.727 \longrightarrow 00:20:24.367$ that there's recruitment of sea

NOTE Confidence: 0.9209971

 $00:20:24.367 \longrightarrow 00:20:26.637$ gas all over this strand of DNA.

NOTE Confidence: 0.9209971

 $00:20:26.640 \longrightarrow 00:20:28.632$ OK. So it's not something that

NOTE Confidence: 0.9209971

 $00:20:28.632 \longrightarrow 00:20:29.628$ happens in mitosis.

NOTE Confidence: 0.9209971

 $00:20:29.630 \longrightarrow 00:20:30.866$ It's far after mitosis.

NOTE Confidence: 0.9209971

 $00{:}20{:}30.866 \dashrightarrow 00{:}20{:}33.094$ There is this bridge of DNA the

NOTE Confidence: 0.9209971

00:20:33.094 --> 00:20:35.264 nuclear was trying to form around it,

 $00:20:35.270 \longrightarrow 00:20:38.150$ but we get these ruptures and see gases

NOTE Confidence: 0.9209971

 $00{:}20{:}38.150 \dashrightarrow 00{:}20{:}40.466$ recruited and this is a persistent bridge.

NOTE Confidence: 0.9209971

 $00:20:40.470 \longrightarrow 00:20:42.207$ I just want to point out you also get

NOTE Confidence: 0.9209971

00:20:42.207 --> 00:20:43.788 this kind of thing to Micronuclei.

NOTE Confidence: 0.9209971

 $00:20:43.790 \longrightarrow 00:20:46.023$ Here's a micronucleus and we can actually

NOTE Confidence: 0.9209971

 $00{:}20{:}46.023 \dashrightarrow 00{:}20{:}48.068$ see that that micronucleus is intact

NOTE Confidence: 0.9209971

00:20:48.068 --> 00:20:50.382 and then it's going to rupture and

NOTE Confidence: 0.9209971

 $00:20:50.382 \longrightarrow 00:20:51.954$ then there's massive C gas recruitment,

NOTE Confidence: 0.9209971

 $00:20:51.960 \longrightarrow 00:20:52.297$ OK.

NOTE Confidence: 0.9209971

00:20:52.297 --> 00:20:54.993 So any of these losses of nuclear integrity,

NOTE Confidence: 0.9209971

 $00{:}20{:}55.000 \dashrightarrow 00{:}20{:}56.932$ whether it's one of these persistent

NOTE Confidence: 0.9209971

00:20:56.932 --> 00:20:58.998 Dania bridges or it's a micronucleus

NOTE Confidence: 0.9209971

 $00{:}20{:}58.998 \dashrightarrow 00{:}21{:}00.840$ can recruit the C gas protein.

NOTE Confidence: 0.27129424

00:21:05.240 --> 00:21:07.704 So I'm going to focus today on these

NOTE Confidence: 0.27129424

 $00:21:07.704 \longrightarrow 00:21:10.242$ DNA bridges and I'm going to just give

NOTE Confidence: 0.27129424

 $00{:}21{:}10.242 \dashrightarrow 00{:}21{:}12.319$ you the rationale for why that is.

 $00:21:12.320 \longrightarrow 00:21:16.650$ Now, one of them is that actually

NOTE Confidence: 0.27129424

 $00:21:16.650 \longrightarrow 00:21:19.100$ many perturbations will cause both

NOTE Confidence: 0.27129424

 $00:21:19.100 \longrightarrow 00:21:22.040$ these DNA bridges and micronuclei.

NOTE Confidence: 0.27129424

00:21:22.040 --> 00:21:23.792 But there's evidence in the literature

NOTE Confidence: 0.27129424

 $00{:}21{:}23.792 \dashrightarrow 00{:}21{:}26.083$ that DNA bridges are actually much more

NOTE Confidence: 0.27129424

00:21:26.083 --> 00:21:27.873 potent activators of Segamp production.

NOTE Confidence: 0.27129424

00:21:27.880 --> 00:21:28.720 If you remember, I told you,

NOTE Confidence: 0.27129424

 $00:21:28.720 \longrightarrow 00:21:30.911$ the recruitment of of C gas is

NOTE Confidence: 0.27129424

 $00:21:30.911 \longrightarrow 00:21:33.043$ not sufficient to activate it to

NOTE Confidence: 0.27129424

 $00:21:33.043 \longrightarrow 00:21:34.918$ generate high levels of Segamp.

NOTE Confidence: 0.27129424

00:21:34.920 --> 00:21:36.600 You know why might that be?

NOTE Confidence: 0.27129424

 $00:21:36.600 \longrightarrow 00:21:38.868$ There's evidence actually that one of

NOTE Confidence: 0.27129424

 $00{:}21{:}38.868 \dashrightarrow 00{:}21{:}41.083$ the mechanisms that keeps cells from

NOTE Confidence: 0.27129424

 $00:21:41.083 \longrightarrow 00:21:43.309$ overreacting to its own genome is the

NOTE Confidence: 0.27129424

 $00:21:43.309 \longrightarrow 00:21:45.463$ fact that nucleosomal or chromatized DNA

 $00:21:45.463 \longrightarrow 00:21:48.292$ is a poor stimulator of Segamp production.

NOTE Confidence: 0.27129424

 $00:21:48.292 \longrightarrow 00:21:49.870$ Whereas naked DNA,

NOTE Confidence: 0.27129424

 $00:21:49.870 \longrightarrow 00:21:51.870$ what you would have in a virus or a bacteria,

NOTE Confidence: 0.27129424

 $00:21:51.870 \longrightarrow 00:21:54.150$ is a far more potent activator

NOTE Confidence: 0.27129424

 $00:21:54.150 \longrightarrow 00:21:55.670$ of C gamp activation.

NOTE Confidence: 0.27129424

 $00:21:55.670 \longrightarrow 00:21:57.944$ And so this would suggest that

NOTE Confidence: 0.27129424

 $00:21:57.944 \longrightarrow 00:22:00.749$ really the state of the DNA matters.

NOTE Confidence: 0.27129424

 $00:22:00.750 \longrightarrow 00:22:02.806$ And what I'm going to argue here is

NOTE Confidence: 0.27129424

 $00{:}22{:}02.806 \dashrightarrow 00{:}22{:}04.474$ that actually micronuclei for the

NOTE Confidence: 0.27129424

 $00:22:04.474 \longrightarrow 00:22:06.309$ most part are chromatized substrate.

NOTE Confidence: 0.27129424

 $00{:}22{:}06.310 \dashrightarrow 00{:}22{:}07.810$ It was a lagging chromosome

NOTE Confidence: 0.27129424

 $00:22:07.810 \longrightarrow 00:22:09.310$ that formed its own nucleus.

NOTE Confidence: 0.27129424

 $00{:}22{:}09.310 \dashrightarrow 00{:}22{:}12.988$ It's unstable but still it's nucleosomal

NOTE Confidence: 0.27129424

 $00:22:12.990 \longrightarrow 00:22:14.766$ whereas this DNA in these persistent

NOTE Confidence: 0.27129424

 $00:22:14.766 \longrightarrow 00:22:16.869$ bridges as you saw in those movies,

NOTE Confidence: 0.27129424

 $00:22:16.870 \longrightarrow 00:22:18.868$ the DNA is being pulled apart.

 $00:22:18.870 \longrightarrow 00:22:20.814$ And so one of the ideas is that it

NOTE Confidence: 0.27129424

 $00:22:20.814 \longrightarrow 00:22:22.715$ there's so much tension on the DNA

NOTE Confidence: 0.27129424

00:22:22.715 --> 00:22:24.531 that actually the histones that make

NOTE Confidence: 0.27129424

 $00:22:24.531 \longrightarrow 00:22:26.678$ nucleosomes are being evicted and then

NOTE Confidence: 0.27129424

 $00{:}22{:}26.678 \dashrightarrow 00{:}22{:}30.326$ the DNA that's left is naked and that

NOTE Confidence: 0.27129424

 $00:22:30.326 \longrightarrow 00:22:33.590$ that is a more potent activator C camp.

NOTE Confidence: 0.27129424

 $00:22:33.590 \longrightarrow 00:22:35.770$ And additional evidence from that

NOTE Confidence: 0.27129424

00:22:35.770 --> 00:22:37.950 for that comes from observations

NOTE Confidence: 0.27129424

00:22:38.017 --> 00:22:40.243 that Apobac activity it is actually

NOTE Confidence: 0.27129424

 $00:22:40.243 \longrightarrow 00:22:42.100$ very high over overstretched DNA

NOTE Confidence: 0.27129424

 $00:22:42.100 \longrightarrow 00:22:43.950$ that is present in bridges,

NOTE Confidence: 0.27129424

 $00:22:43.950 \longrightarrow 00:22:46.113$ which suggests that it can also become

NOTE Confidence: 0.27129424

 $00{:}22{:}46.113 \dashrightarrow 00{:}22{:}48.109$ single stranded and acted on by APOBEC.

NOTE Confidence: 0.27129424

00:22:48.110 --> 00:22:49.845 Such as additional evidence that

NOTE Confidence: 0.27129424

 $00:22:49.845 \longrightarrow 00:22:52.000$ the structure in these in these

00:22:52.000 --> 00:22:53.795 persistent DNA bridges is different

NOTE Confidence: 0.27129424

 $00{:}22{:}53.795 \dashrightarrow 00{:}22{:}56.190$ than what might be in Micronuclei.

NOTE Confidence: 0.27129424 00:22:56.190 --> 00:22:56.401 OK.

NOTE Confidence: 0.27129424

00:22:56.401 --> 00:22:57.878 And then last bit of cell biology

NOTE Confidence: 0.27129424

 $00:22:57.878 \longrightarrow 00:22:59.617$ before I get into our own data that

NOTE Confidence: 0.27129424

00:22:59.617 --> 00:23:01.243 I need to introduce you to is the

NOTE Confidence: 0.27129424

 $00:23:01.243 \longrightarrow 00:23:02.677$ idea that like in that NLS movie,

NOTE Confidence: 0.27129424

00:23:02.677 --> 00:23:04.312 there's also a nuclear envelope

NOTE Confidence: 0.27129424

 $00{:}23{:}04.312 \dashrightarrow 00{:}23{:}05.980$ repair mechanism that is looking

NOTE Confidence: 0.27129424

 $00:23:05.980 \longrightarrow 00:23:07.816$ for these breaks in the nuclear

NOTE Confidence: 0.27129424

 $00{:}23{:}07.816 \dashrightarrow 00{:}23{:}09.310$ envelope and trying to fix it.

NOTE Confidence: 0.27129424

 $00:23:09.310 \longrightarrow 00:23:11.095$ And this is something that's been of

NOTE Confidence: 0.27129424

 $00:23:11.095 \longrightarrow 00:23:12.986$ interest to our group for a long time.

NOTE Confidence: 0.27129424

 $00:23:12.990 \longrightarrow 00:23:14.510$ So remember as I said,

NOTE Confidence: 0.27129424

00:23:14.510 --> 00:23:15.662 in a normal mitosis,

NOTE Confidence: 0.27129424

 $00:23:15.662 \longrightarrow 00:23:17.390$ the nuclear envelope has broken down,

 $00:23:17.390 \longrightarrow 00:23:18.578$ the chromosomes are exposed,

NOTE Confidence: 0.27129424

 $00:23:18.578 \longrightarrow 00:23:20.063$ but they don't activate the

NOTE Confidence: 0.27129424

 $00:23:20.063 \longrightarrow 00:23:21.069$ innate immune system.

NOTE Confidence: 0.27129424

 $00:23:21.070 \longrightarrow 00:23:23.020$ Then we reform the nuclear

NOTE Confidence: 0.27129424

 $00:23:23.020 \longrightarrow 00:23:24.580$ envelope at mitotic exit.

NOTE Confidence: 0.27129424

00:23:24.580 --> 00:23:26.140 When the nuclear envelope is reformed,

NOTE Confidence: 0.27129424

 $00:23:26.140 \longrightarrow 00:23:28.140$ you have sheets of endoplasmic

NOTE Confidence: 0.27129424

 $00{:}23{:}28.140 \dashrightarrow 00{:}23{:}29.740$ reticulum around the chromosomes,

NOTE Confidence: 0.27129424

 $00:23:29.740 \longrightarrow 00:23:31.258$ but it's full of holes actually.

NOTE Confidence: 0.27129424

 $00:23:31.260 \longrightarrow 00:23:32.870$ And those holes are particularly

NOTE Confidence: 0.27129424

 $00:23:32.870 \longrightarrow 00:23:34.480$ where there are still microtubules

NOTE Confidence: 0.27129424

00:23:34.537 --> 00:23:35.982 from the spindle that are

NOTE Confidence: 0.27129424

 $00{:}23{:}35.982 \dashrightarrow 00{:}23{:}37.138$ attached to the chromosomes.

NOTE Confidence: 0.27129424

 $00:23:37.140 \longrightarrow 00:23:38.890$ So there is a machinery that has

NOTE Confidence: 0.27129424

 $00:23:38.890 \longrightarrow 00:23:40.957$ to come in and fix all these holes

 $00:23:40.957 \longrightarrow 00:23:42.740$ at the end of every mitosis.

NOTE Confidence: 0.27129424

 $00:23:42.740 \longrightarrow 00:23:45.050$ And that machinery is made-up of the

NOTE Confidence: 0.27129424

 $00{:}23{:}45.050 \dashrightarrow 00{:}23{:}46.740$ components that I've shown here.

NOTE Confidence: 0.27129424

00:23:46.740 --> 00:23:48.522 There is an abundant DNA binding

NOTE Confidence: 0.27129424

 $00:23:48.522 \longrightarrow 00:23:49.413$ protein called bath,

NOTE Confidence: 0.73344946

 $00:23:49.420 \longrightarrow 00:23:52.444$ not to be confused with the chromatin

NOTE Confidence: 0.73344946

 $00:23:52.444 \longrightarrow 00:23:54.998$ remodeler bath and this brings in

NOTE Confidence: 0.73344946

 $00:23:54.998 \longrightarrow 00:23:57.688$ a protein called LEM 2 which is

NOTE Confidence: 0.73344946

 $00{:}23{:}57.688 \dashrightarrow 00{:}23{:}59.133$ an integral membrane protein and

NOTE Confidence: 0.73344946

 $00:23:59.133 \longrightarrow 00:24:00.789$ that's shown here in the cartoon.

NOTE Confidence: 0.73344946

 $00{:}24{:}00.790 \dashrightarrow 00{:}24{:}02.806$ So this LEM Two is recruited to these

NOTE Confidence: 0.73344946

 $00:24:02.806 \longrightarrow 00:24:05.478$ holes in the nuclear envelope and LEM Two

NOTE Confidence: 0.73344946

00:24:05.478 --> 00:24:07.830 is an adapter for the escort machinery,

NOTE Confidence: 0.73344946

 $00{:}24{:}07.830 \dashrightarrow 00{:}24{:}09.798$ particularly CHIM 7 which is a

NOTE Confidence: 0.73344946

 $00:24:09.798 \longrightarrow 00:24:11.110$ nuclear envelope specific escort.

NOTE Confidence: 0.73344946

 $00{:}24{:}11.110 \dashrightarrow 00{:}24{:}13.483$ So the escorts are a membrane remodeling

 $00:24:13.483 \longrightarrow 00:24:15.437$ machinery that basically can take a hole

NOTE Confidence: 0.73344946

 $00{:}24{:}15.437 \dashrightarrow 00{:}24{:}17.279$ in a membrane and they can close it.

NOTE Confidence: 0.73344946

00:24:17.280 --> 00:24:20.040 And so this machinery is recruiting,

NOTE Confidence: 0.73344946

00:24:20.040 --> 00:24:21.858 is recruiting escorts to the nuclear

NOTE Confidence: 0.73344946

 $00:24:21.858 \longrightarrow 00:24:23.920$ envelope they form these spiral polymers,

NOTE Confidence: 0.73344946

 $00:24:23.920 \longrightarrow 00:24:25.872$ and you need this to have one nuclear

NOTE Confidence: 0.73344946

 $00:24:25.872 \longrightarrow 00:24:27.357$ envelope at the end of mitosis.

NOTE Confidence: 0.73344946

 $00:24:27.360 \longrightarrow 00:24:28.998$ So this is the normal thing

NOTE Confidence: 0.73344946

 $00:24:29.000 \longrightarrow 00:24:30.245$ that's always happening.

NOTE Confidence: 0.73344946

 $00{:}24{:}30.245 \dashrightarrow 00{:}24{:}32.735$ But there's abundant evidence that this

NOTE Confidence: 0.73344946

00:24:32.735 --> 00:24:35.130 same exact machinery is recruited anytime

NOTE Confidence: 0.73344946

 $00:24:35.130 \longrightarrow 00:24:37.720$ there's a defect in nuclear integrity.

NOTE Confidence: 0.73344946

 $00{:}24{:}37.720 --> 00{:}24{:}38.692$ And so I'm just showing you

NOTE Confidence: 0.73344946

 $00:24:38.692 \longrightarrow 00:24:39.560$ an example of this here.

NOTE Confidence: 0.73344946

 $00:24:39.560 \longrightarrow 00:24:41.548$ This is actually where a rupture in

 $00:24:41.548 \longrightarrow 00:24:43.320$ the nuclear envelope has been induced.

NOTE Confidence: 0.73344946

 $00{:}24{:}43.320 \dashrightarrow 00{:}24{:}45.630$ And you can see that there's recruitment

NOTE Confidence: 0.73344946

 $00:24:45.630 \longrightarrow 00:24:48.180$ of this escort chimp 7 as well as

NOTE Confidence: 0.73344946

 $00:24:48.180 \longrightarrow 00:24:49.740$ recruitment of sea gas, right.

NOTE Confidence: 0.73344946

 $00:24:49.740 \longrightarrow 00:24:52.008$ So one way of thinking about this

NOTE Confidence: 0.73344946

00:24:52.008 --> 00:24:54.262 kind of similar to the P53 story,

NOTE Confidence: 0.73344946

00:24:54.262 --> 00:24:56.117 you know, you can repair,

NOTE Confidence: 0.73344946

00:24:56.120 --> 00:24:58.280 you can repair DNA or the cell can

NOTE Confidence: 0.73344946

 $00{:}24{:}58.280 \dashrightarrow 00{:}25{:}00.555$ die and you can give up on things.

NOTE Confidence: 0.73344946

 $00:25:00.560 \longrightarrow 00:25:01.868$ We have this machinery that sees

NOTE Confidence: 0.73344946

 $00{:}25{:}01.868 \dashrightarrow 00{:}25{:}03.600$ a hole in the nuclear envelope.

NOTE Confidence: 0.73344946

 $00:25:03.600 \longrightarrow 00:25:05.497$ It can try to fix the hole,

NOTE Confidence: 0.73344946

 $00:25:05.500 \longrightarrow 00:25:06.697$ but if it can't fix the hole,

NOTE Confidence: 0.73344946

 $00:25:06.700 \longrightarrow 00:25:08.050$ there's a surveillance by the

NOTE Confidence: 0.73344946

 $00:25:08.050 \longrightarrow 00:25:08.860$ innate immune system.

NOTE Confidence: 0.73344946

 $00:25:08.860 \longrightarrow 00:25:10.085$ And so there's actually a

00:25:10.085 --> 00:25:10.820 competition potentially that's

NOTE Confidence: 0.73344946

 $00{:}25{:}10.820 \dashrightarrow 00{:}25{:}12.178$ going on between these factors.

NOTE Confidence: 0.73344946

 $00:25:12.180 \longrightarrow 00:25:13.866$ And I'll show you some evidence

NOTE Confidence: 0.73344946

 $00:25:13.866 \longrightarrow 00:25:15.500$ for that in a moment.

NOTE Confidence: 0.73344946

 $00{:}25{:}15.500 --> 00{:}25{:}15.739 \ \mathrm{Right}.$

NOTE Confidence: 0.73344946

 $00:25:15.739 \longrightarrow 00:25:16.456$ So here is,

NOTE Confidence: 0.73344946

00:25:16.456 --> 00:25:18.792 and I'm just going to lay out why we've

NOTE Confidence: 0.73344946

 $00:25:18.792 \longrightarrow 00:25:20.484$ done the experiments that I'm going

NOTE Confidence: 0.73344946

 $00:25:20.484 \longrightarrow 00:25:22.618$ to describe in the rest of the talk.

NOTE Confidence: 0.73344946

 $00:25:22.620 \longrightarrow 00:25:24.732$ I've already walked through

NOTE Confidence: 0.73344946

 $00:25:24.732 \longrightarrow 00:25:27.140$ Interphase and the idea, P 53.

NOTE Confidence: 0.73344946

 $00{:}25{:}27.140 \dashrightarrow 00{:}25{:}29.155$ So I just want to make the argument

NOTE Confidence: 0.73344946

 $00{:}25{:}29.155 \dashrightarrow 00{:}25{:}32.300$ up front for the hypothesis of a

NOTE Confidence: 0.73344946

 $00:25:32.300 \longrightarrow 00:25:34.040$ similar surveillance mechanism that's

NOTE Confidence: 0.73344946

00:25:34.040 --> 00:25:36.390 active post mitosis to Surveil,

 $00:25:36.390 \longrightarrow 00:25:38.790$ the integrity of the mitotic process.

NOTE Confidence: 0.73344946

 $00:25:38.790 \longrightarrow 00:25:41.261$ So if cells go into mitosis with

NOTE Confidence: 0.73344946

 $00:25:41.261 \longrightarrow 00:25:43.430$ under replicated DNA or unresolved

NOTE Confidence: 0.73344946

00:25:43.430 --> 00:25:44.990 DNA repair intermediates,

NOTE Confidence: 0.73344946

 $00:25:44.990 \longrightarrow 00:25:46.220$ these are things which we're going

NOTE Confidence: 0.73344946

00:25:46.220 --> 00:25:47.868 to see in an HR deficient cell,

NOTE Confidence: 0.73344946

 $00:25:47.870 \longrightarrow 00:25:49.458$ particularly one that's been

NOTE Confidence: 0.73344946

00:25:49.458 --> 00:25:51.443 treated with PARP inhibitors or

NOTE Confidence: 0.73344946

 $00{:}25{:}51.443 \dashrightarrow 00{:}25{:}52.948$ chromosomes that are entangled.

NOTE Confidence: 0.73344946

00:25:52.950 --> 00:25:54.906 This will initially activate mechanisms that

NOTE Confidence: 0.73344946

 $00{:}25{:}54.906 \dashrightarrow 00{:}25{:}57.149$ try to help segregate these chromosomes.

NOTE Confidence: 0.73344946

 $00:25:57.150 \longrightarrow 00:25:59.598$ This involves proteins like the Bloom

NOTE Confidence: 0.73344946

00:25:59.598 --> 00:26:01.810 helicase on the pitch healer case,

NOTE Confidence: 0.73344946

00:26:01.810 --> 00:26:04.482 Paul Theta, You know,

NOTE Confidence: 0.73344946

 $00:26:04.482 \longrightarrow 00:26:06.486$ mediated and joining,

NOTE Confidence: 0.73344946

 $00{:}26{:}06.490 \dashrightarrow 00{:}26{:}09.526$ as well as other topo isomerases.

 $00:26:09.530 \longrightarrow 00:26:10.926$ But if those repair,

NOTE Confidence: 0.73344946

 $00{:}26{:}10.926 {\:{\text{--}}}{\:{\text{>}}}\ 00{:}26{:}12.671$ you know those attempts to

NOTE Confidence: 0.73344946

00:26:12.671 --> 00:26:14.129 segregate chromosomes fail,

NOTE Confidence: 0.73344946

 $00:26:14.130 \longrightarrow 00:26:15.691$ then one of the consequences I've shown

NOTE Confidence: 0.73344946

00:26:15.691 --> 00:26:17.696 you is that you can have defects in

NOTE Confidence: 0.73344946

00:26:17.696 --> 00:26:18.910 nuclear integrity and now the cell

NOTE Confidence: 0.73344946

 $00:26:18.910 \longrightarrow 00:26:20.249$ has to kind of decide what to do.

NOTE Confidence: 0.73344946

 $00:26:20.250 \longrightarrow 00:26:21.560$ So there's a nuclear envelope

NOTE Confidence: 0.73344946

 $00:26:21.560 \longrightarrow 00:26:23.404$ repair network And so I showed you

NOTE Confidence: 0.73344946

 $00{:}26{:}23.404 \dashrightarrow 00{:}26{:}25.070$ this bath LEM two chimp 7 access

NOTE Confidence: 0.73344946

 $00:26:25.070 \longrightarrow 00:26:26.524$ that as I've mentioned our group

NOTE Confidence: 0.73344946

 $00:26:26.524 \longrightarrow 00:26:28.730$ has worked on for a long time

NOTE Confidence: 0.73344946

 $00{:}26{:}28.730 \dashrightarrow 00{:}26{:}30.810$ understanding the mechanisms of

NOTE Confidence: 0.29974625

 $00:26:30.810 \longrightarrow 00:26:33.645$ and that this can promote cell survival

NOTE Confidence: 0.29974625

 $00:26:33.650 \longrightarrow 00:26:36.490$ and possibly genome integrity.

 $00:26:36.490 \longrightarrow 00:26:38.688$ On the other hand if they're unable

NOTE Confidence: 0.29974625

00:26:38.688 --> 00:26:40.677 to repair these breaks in the

NOTE Confidence: 0.29974625

 $00:26:40.677 \longrightarrow 00:26:42.645$ nucleus then this will expose DNA.

NOTE Confidence: 0.29974625

 $00:26:42.650 \longrightarrow 00:26:44.827$ This can activate C gas and perhaps

NOTE Confidence: 0.29974625

00:26:44.827 --> 00:26:47.187 this is the mechanism of cell death

NOTE Confidence: 0.29974625

 $00:26:47.187 \longrightarrow 00:26:50.109$ that is tied to mitosis and is tied

NOTE Confidence: 0.29974625

 $00{:}26{:}50.109 \dashrightarrow 00{:}26{:}52.581$ to these observations of innate immune

NOTE Confidence: 0.29974625

 $00:26:52.581 \longrightarrow 00:26:55.418$ signaling that occur as a consequence of

NOTE Confidence: 0.29974625

 $00:26:55.418 \longrightarrow 00:26:58.359$ PARP inhibitors in HR deficient cells.

NOTE Confidence: 0.29974625

00:26:58.360 --> 00:27:00.784 And I just want to point out that, right,

NOTE Confidence: 0.29974625

 $00:27:00.784 \longrightarrow 00:27:03.880$ we're going to push these further if we any,

NOTE Confidence: 0.29974625

00:27:03.880 --> 00:27:05.855 any time we disrupt the checkpoint, right.

NOTE Confidence: 0.29974625

 $00{:}27{:}05.855 \dashrightarrow 00{:}27{:}07.640$ So if cells are going into mitosis

NOTE Confidence: 0.29974625

00:27:07.640 --> 00:27:09.600 when they have not repaired their DNA,

NOTE Confidence: 0.29974625

 $00:27:09.600 \longrightarrow 00:27:11.833$ these are more likely to happen if

NOTE Confidence: 0.29974625

 $00{:}27{:}11.833 \dashrightarrow 00{:}27{:}14.387$ you have an HR defect and if you

 $00:27:14.387 \longrightarrow 00:27:16.680$ treat cells with a PARP inhibitor.

NOTE Confidence: 0.29974625

 $00{:}27{:}16.680 {\:\dashrightarrow\:} 00{:}27{:}18.880$ The very last thing I'll talk about is,

NOTE Confidence: 0.29974625

 $00:27:18.880 \longrightarrow 00:27:21.895$ is there a way that we might use this

NOTE Confidence: 0.29974625

00:27:21.895 --> 00:27:24.246 nuclear integrity defects as a biomarker

NOTE Confidence: 0.29974625

 $00:27:24.246 \longrightarrow 00:27:27.655$ of HR defects or of of contacts

NOTE Confidence: 0.29974625

 $00:27:27.655 \longrightarrow 00:27:30.439$ where PARP inhibitors might be effective.

NOTE Confidence: 0.29974625

 $00:27:30.440 \longrightarrow 00:27:32.420$ So I'll come back to that at the end.

NOTE Confidence: 0.29974625

 $00:27:32.420 \longrightarrow 00:27:34.100$ And also might this nuclear envelope

NOTE Confidence: 0.29974625

 $00{:}27{:}34.100 \dashrightarrow 00{:}27{:}36.224$ repair network be a new target, right.

NOTE Confidence: 0.29974625

 $00:27:36.224 \longrightarrow 00:27:38.648$ These are factors which actually limit

NOTE Confidence: 0.29974625

 $00:27:38.648 \longrightarrow 00:27:40.572$ the action potentially of agents

NOTE Confidence: 0.29974625

 $00{:}27{:}40.572 \dashrightarrow 00{:}27{:}42.708$ that are driving these defects that

NOTE Confidence: 0.29974625

00:27:42.708 --> 00:27:44.180 we're using clinically.

NOTE Confidence: 0.29974625

00:27:44.180 --> 00:27:44.446 OK.

NOTE Confidence: 0.29974625

00:27:44.446 --> 00:27:46.574 So now I'm just going to show you

 $00:27:46.574 \longrightarrow 00:27:48.617$ some of the data from our group.

NOTE Confidence: 0.29974625

00:27:48.620 --> 00:27:50.972 This initial data is using actually

NOTE Confidence: 0.29974625

00:27:50.972 --> 00:27:52.540 an ovarian cancer model,

NOTE Confidence: 0.29974625

 $00{:}27{:}52.540 \dashrightarrow 00{:}27{:}55.096$ UWB 1280 nines which are a BRCA 1 deficient,

NOTE Confidence: 0.29974625

00:27:55.100 --> 00:27:56.604 HR deficient cell line.

NOTE Confidence: 0.29974625

00:27:56.604 --> 00:27:59.732 And so I'm just showing you an example

NOTE Confidence: 0.29974625

 $00:27:59.732 \longrightarrow 00:28:02.120$ of what one of these persistent

NOTE Confidence: 0.29974625

 $00:28:02.120 \longrightarrow 00:28:03.730$ DNA bridges look like.

NOTE Confidence: 0.29974625

 $00:28:03.730 \longrightarrow 00:28:04.228$ This is.

NOTE Confidence: 0.29974625

00:28:04.228 --> 00:28:06.220 You can think of this as very much

NOTE Confidence: 0.29974625

00:28:06.279 --> 00:28:08.064 as the end point of that movie

NOTE Confidence: 0.29974625

 $00{:}28{:}08.064 \dashrightarrow 00{:}28{:}10.247$ that I showed you that we also see

NOTE Confidence: 0.29974625

 $00{:}28{:}10.247 \dashrightarrow 00{:}28{:}12.342$ specifically in HR in this HR deficient

NOTE Confidence: 0.29974625

 $00:28:12.342 \longrightarrow 00:28:14.172$ line that's further precipitated by

NOTE Confidence: 0.29974625

 $00:28:14.172 \longrightarrow 00:28:16.249$ the addition of PARP inhibitors.

NOTE Confidence: 0.29974625

 $00{:}28{:}16.250 \dashrightarrow 00{:}28{:}18.762$ And so like in that example you can

 $00:28:18.762 \longrightarrow 00:28:21.335$ see that this bridge which is all

NOTE Confidence: 0.29974625

 $00{:}28{:}21.335 \dashrightarrow 00{:}28{:}23.280$ along connecting these two nuclei

NOTE Confidence: 0.29974625

 $00:28:23.350 \longrightarrow 00:28:25.228$ is highly enriched in C gas.

NOTE Confidence: 0.29974625

 $00:28:25.230 \longrightarrow 00:28:27.232$ And so we would speculate from this

NOTE Confidence: 0.29974625

 $00:28:27.232 \longrightarrow 00:28:29.344$ that this is the region of the

NOTE Confidence: 0.29974625

 $00:28:29.344 \longrightarrow 00:28:31.132$ nucleus where the DNA is exposed

NOTE Confidence: 0.29974625

 $00:28:31.192 \longrightarrow 00:28:33.298$ to the cytoplasm and where we're

NOTE Confidence: 0.29974625

 $00{:}28{:}33.298 \dashrightarrow 00{:}28{:}34.702$ getting C gas recruitment.

NOTE Confidence: 0.29974625

 $00:28:34.710 \longrightarrow 00:28:36.980$ And so this is just showing you here what

NOTE Confidence: 0.29974625

 $00{:}28{:}36.980 \dashrightarrow 00{:}28{:}38.880$ happens when we treat with PARP inhibitor.

NOTE Confidence: 0.29974625

 $00:28:38.880 \longrightarrow 00:28:39.924$ Sorry, I've lost.

NOTE Confidence: 0.29974625

 $00:28:39.924 \longrightarrow 00:28:41.316$ Yes, here we go.

NOTE Confidence: 0.29974625

 $00:28:41.320 \longrightarrow 00:28:41.602$ Yeah.

NOTE Confidence: 0.29974625

 $00:28:41.602 \longrightarrow 00:28:44.140$ So the on the on the left is just

NOTE Confidence: 0.29974625

00:28:44.212 --> 00:28:46.240 the UWB one, this UW one cell line.

 $00:28:46.240 \longrightarrow 00:28:48.358$ And then when we add elaporib,

NOTE Confidence: 0.29974625

 $00{:}28{:}48.360 \dashrightarrow 00{:}28{:}50.076$ interestingly one of the things that

NOTE Confidence: 0.29974625

 $00{:}28{:}50.076 \dashrightarrow 00{:}28{:}52.033$ we see is the elaporib increases

NOTE Confidence: 0.29974625

 $00:28:52.033 \longrightarrow 00:28:54.295$ the percent of cells that have

NOTE Confidence: 0.29974625

 $00:28:54.295 \longrightarrow 00:28:55.799$ these persistent DNA bridges.

NOTE Confidence: 0.29974625

 $00{:}28{:}55.800 \dashrightarrow 00{:}28{:}59.475$ But UWB ONE cells have abundant micronuclei

NOTE Confidence: 0.29974625

00:28:59.475 --> 00:29:02.798 as many tumor cells do in vitro.

NOTE Confidence: 0.29974625

00:29:02.800 --> 00:29:03.722 And actually,

NOTE Confidence: 0.29974625

 $00:29:03.722 \longrightarrow 00:29:06.800$ this is not precipitated by PARP inhibitors,

NOTE Confidence: 0.29974625

 $00:29:06.800 \longrightarrow 00:29:08.850$ at least in this context.

NOTE Confidence: 0.29974625

 $00:29:08.850 \longrightarrow 00:29:10.453$ And so this is another reason why

NOTE Confidence: 0.29974625

00:29:10.453 --> 00:29:11.890 we're very interested in these bridges,

NOTE Confidence: 0.29974625

 $00:29:11.890 \longrightarrow 00:29:13.626$ because they seem to be the structure

NOTE Confidence: 0.29974625

 $00{:}29{:}13.626 \dashrightarrow 00{:}29{:}15.169$ that's most precipitated by PARP inhibitors,

NOTE Confidence: 0.29974625

 $00:29:15.170 \longrightarrow 00:29:17.300$ whereas there's just a high rate

NOTE Confidence: 0.29974625

 $00:29:17.300 \longrightarrow 00:29:18.834$ of micronuclei all of the time.

 $00:29:18.834 \longrightarrow 00:29:20.070$ But that does not seem to

NOTE Confidence: 0.6971082

00:29:20.123 --> 00:29:21.448 respond to the addition of,

NOTE Confidence: 0.6971082

 $00:29:21.450 \longrightarrow 00:29:24.408$ in this case, a lab rib.

NOTE Confidence: 0.6971082

 $00:29:24.410 \longrightarrow 00:29:26.754$ So we also think that for the vast

NOTE Confidence: 0.6971082

 $00:29:26.754 \longrightarrow 00:29:28.553$ majority of these persistent bridges

NOTE Confidence: 0.6971082

 $00:29:28.553 \longrightarrow 00:29:30.845$ that we observe in response to

NOTE Confidence: 0.6971082

00:29:30.845 --> 00:29:33.207 PARP inhibitors that there is that,

NOTE Confidence: 0.6971082

 $00:29:33.210 \longrightarrow 00:29:34.895$ that there has been a

NOTE Confidence: 0.6971082

00:29:34.895 --> 00:29:36.243 loss of nuclear integrity.

NOTE Confidence: 0.6971082

 $00:29:36.250 \longrightarrow 00:29:37.930$ And so one thing I just want to

NOTE Confidence: 0.6971082

 $00:29:37.930 \longrightarrow 00:29:39.527$ point out here is that you know,

NOTE Confidence: 0.6971082

 $00:29:39.530 \longrightarrow 00:29:41.840$ one challenge I think in general is

NOTE Confidence: 0.6971082

 $00{:}29{:}41.840 \dashrightarrow 00{:}29{:}44.352$ that you cannot see that that these

NOTE Confidence: 0.6971082

 $00{:}29{:}44.352 \longrightarrow 00{:}29{:}46.530$ nuclei have a persistent DNA bridge.

NOTE Confidence: 0.6971082

 $00:29:46.530 \longrightarrow 00:29:48.538$ If you just look at DNA stain because

 $00:29:48.538 \longrightarrow 00:29:50.547$ it's too thin essentially or there's

NOTE Confidence: 0.6971082

 $00{:}29{:}50.547 \dashrightarrow 00{:}29{:}52.352$ something about the DNA structure

NOTE Confidence: 0.6971082

 $00{:}29{:}52.352 \dashrightarrow 00{:}29{:}54.642$ that disrupts the ability of the DNA

NOTE Confidence: 0.6971082

00:29:54.642 --> 00:29:56.302 stain to intercalate into the bases.

NOTE Confidence: 0.6971082

 $00:29:56.302 \longrightarrow 00:29:57.126$ One or the other,

NOTE Confidence: 0.6971082

 $00:29:57.130 \longrightarrow 00:29:59.030$ we don't actually know yet.

NOTE Confidence: 0.6971082

 $00{:}29{:}59.030 \dashrightarrow 00{:}30{:}00.374$ So actually in order to know

NOTE Confidence: 0.6971082

 $00:30:00.374 \longrightarrow 00:30:01.590$ that there's a bridge there,

NOTE Confidence: 0.6971082

 $00{:}30{:}01.590 \longrightarrow 00{:}30{:}03.424$ you need a marker for a bridge.

NOTE Confidence: 0.6971082

00:30:03.430 --> 00:30:04.739 And actually it turns out that one

NOTE Confidence: 0.6971082

 $00{:}30{:}04.739 \dashrightarrow 00{:}30{:}06.196$ of the best markers for a bridge

NOTE Confidence: 0.6971082

 $00:30:06.196 \longrightarrow 00:30:07.468$ is this protein called man one,

NOTE Confidence: 0.6971082

 $00:30:07.470 \longrightarrow 00:30:10.389$ which is a specific nuclear envelope protein.

NOTE Confidence: 0.6971082

 $00:30:10.390 \longrightarrow 00:30:11.270$ And so you know,

NOTE Confidence: 0.6971082

00:30:11.270 --> 00:30:13.148 you can see quite a beautifully that it is,

NOTE Confidence: 0.6971082

00:30:13.150 --> 00:30:13.550 you know,

 $00:30:13.550 \longrightarrow 00:30:14.950$ in the nuclear envelope of all cells,

NOTE Confidence: 0.6971082

 $00:30:14.950 \longrightarrow 00:30:16.826$ but it really nicely decorates these bridges.

NOTE Confidence: 0.6971082

 $00:30:16.830 \longrightarrow 00:30:18.504$ And so this has been a really important tool.

NOTE Confidence: 0.6971082

 $00:30:18.510 \longrightarrow 00:30:19.386$ It seems very simple,

NOTE Confidence: 0.6971082

 $00:30:19.386 \longrightarrow 00:30:20.952$ but the ability to see the things

NOTE Confidence: 0.6971082

00:30:20.952 --> 00:30:22.387 that you want to look for is,

NOTE Confidence: 0.6971082

 $00:30:22.390 \longrightarrow 00:30:23.227$ is pretty important.

NOTE Confidence: 0.6971082

00:30:23.227 --> 00:30:25.180 So we've been using this antibody to

NOTE Confidence: 0.6971082

00:30:25.234 --> 00:30:26.999 this inner nuclear membrane protein,

NOTE Confidence: 0.6971082

 $00:30:27.000 \longrightarrow 00:30:29.359$ MAN one in order to surveil this.

NOTE Confidence: 0.6971082

 $00:30:29.360 \longrightarrow 00:30:33.336$ And so we can then look at the

NOTE Confidence: 0.6971082

 $00:30:33.336 \longrightarrow 00:30:35.193$ coincidence of other factors on

NOTE Confidence: 0.6971082

 $00:30:35.193 \longrightarrow 00:30:37.979$ these bridges and I want to focus

NOTE Confidence: 0.6971082

 $00:30:37.979 \longrightarrow 00:30:39.973$ specifically on the other elements

NOTE Confidence: 0.6971082

 $00:30:39.973 \longrightarrow 00:30:41.873$ of that DNA repair pathway.

00:30:41.880 --> 00:30:43.736 So not only is is C gas recruited

NOTE Confidence: 0.6971082

 $00{:}30{:}43.736 \dashrightarrow 00{:}30{:}45.823$ and yet we we interpret that

NOTE Confidence: 0.6971082

 $00:30:45.823 \longrightarrow 00:30:46.759$ as ruptured bridges,

NOTE Confidence: 0.6971082

 $00:30:46.760 \longrightarrow 00:30:48.200$ but there's also the recruitment

NOTE Confidence: 0.6971082

 $00:30:48.200 \longrightarrow 00:30:49.640$ of LEM two and bath.

NOTE Confidence: 0.6971082

 $00:30:49.640 \longrightarrow 00:30:51.212$ These are these factors that are

NOTE Confidence: 0.6971082

 $00:30:51.212 \longrightarrow 00:30:52.871$ involved in trying to repair these

NOTE Confidence: 0.6971082

00:30:52.871 --> 00:30:54.437 breaks in in the nuclear envelope

NOTE Confidence: 0.6971082

 $00:30:54.437 \longrightarrow 00:30:56.347$ and so this is evidence that that

NOTE Confidence: 0.6971082

00:30:56.347 --> 00:30:57.949 same kind of antagonism that I

NOTE Confidence: 0.6971082

 $00{:}30{:}58.000 \dashrightarrow 00{:}30{:}59.958$ showed you in a induced rupture of

NOTE Confidence: 0.6971082

 $00{:}30{:}59.958 \dashrightarrow 00{:}31{:}02.730$ the nucleus is also going on here.

NOTE Confidence: 0.6971082

 $00:31:02.730 \longrightarrow 00:31:04.865$ If we identify bridges using this man

NOTE Confidence: 0.6971082

 $00:31:04.865 \longrightarrow 00:31:07.137$ 1 antibody what what we can see is

NOTE Confidence: 0.6971082

 $00:31:07.137 \longrightarrow 00:31:09.529$ that all bridges have limb 2 which we expect.

NOTE Confidence: 0.6971082

 $00:31:09.530 \longrightarrow 00:31:11.636$ Those are two different inter nuclear

00:31:11.636 --> 00:31:13.120 membrane proteins but more than

NOTE Confidence: 0.6971082

 $00:31:13.120 \longrightarrow 00:31:14.940$ half of them have C gas recruitment

NOTE Confidence: 0.6971082

 $00:31:14.994 \longrightarrow 00:31:16.614$ and so this suggests again that

NOTE Confidence: 0.6971082

 $00:31:16.614 \longrightarrow 00:31:18.563$ the majority of the bridges that we

NOTE Confidence: 0.6971082

 $00:31:18.563 \longrightarrow 00:31:20.183$ detect are ruptured and that DNA

NOTE Confidence: 0.6971082

 $00:31:20.183 \longrightarrow 00:31:22.460$ is likely exposed to the cytoplasm.

NOTE Confidence: 0.4833358

 $00:31:25.060 \longrightarrow 00:31:26.537$ I also want to point out that

NOTE Confidence: 0.4833358

 $00:31:26.537 \longrightarrow 00:31:28.582$ one of the ideas in that nuclear

NOTE Confidence: 0.4833358

 $00{:}31{:}28.582 \dashrightarrow 00{:}31{:}30.272$ envelope reformation is that there's

NOTE Confidence: 0.4833358

 $00{:}31{:}30.272 \dashrightarrow 00{:}31{:}32.124$ local recruitment of LEM two and

NOTE Confidence: 0.4833358

 $00{:}31{:}32.124 \dashrightarrow 00{:}31{:}34.362$ these escort proteins to try to to

NOTE Confidence: 0.4833358

 $00:31:34.362 \longrightarrow 00:31:36.317$ actually seal the nuclear envelope.

NOTE Confidence: 0.4833358

 $00:31:36.320 \longrightarrow 00:31:38.007$ And if we kind of zoom in

NOTE Confidence: 0.4833358

00:31:38.007 --> 00:31:39.711 particularly on LEM two, LEM 2 here,

NOTE Confidence: 0.4833358

 $00:31:39.711 \longrightarrow 00:31:41.709$ you can see that there are regions where

 $00:31:41.709 \longrightarrow 00:31:43.997$ there's a really high accumulation of LEM 2.

NOTE Confidence: 0.4833358

 $00:31:44.000 \longrightarrow 00:31:45.617$ And so this is likely the region

NOTE Confidence: 0.4833358

00:31:45.617 --> 00:31:46.909 of this bridge where there's

NOTE Confidence: 0.4833358

 $00:31:46.909 \longrightarrow 00:31:48.279$ been a loss of integrity.

NOTE Confidence: 0.4833358

 $00:31:48.280 \longrightarrow 00:31:50.360$ And that kind of explains why sea gas

NOTE Confidence: 0.4833358

 $00:31:50.360 \longrightarrow 00:31:52.530$ is also seen in this patchy pattern

NOTE Confidence: 0.4833358

 $00:31:52.530 \longrightarrow 00:31:54.930$ because there probably is a local effect.

NOTE Confidence: 0.4833358

00:31:54.930 --> 00:31:57.290 And I'm just showing you here line profiles,

NOTE Confidence: 0.4833358

 $00:31:57.290 \longrightarrow 00:31:58.410$ just showing that there's

NOTE Confidence: 0.4833358

00:31:58.410 --> 00:31:59.810 specific recruitment of LEM two,

NOTE Confidence: 0.4833358

 $00:31:59.810 \longrightarrow 00:32:00.518$ this man one protein,

NOTE Confidence: 0.4833358

 $00:32:00.518 \longrightarrow 00:32:01.580$ even though it's in a nuclear

NOTE Confidence: 0.4833358

00:32:01.619 --> 00:32:02.209 membrane protein,

NOTE Confidence: 0.4833358

00:32:02.210 --> 00:32:03.595 it's kind of distributed throughout

NOTE Confidence: 0.4833358

 $00:32:03.595 \longrightarrow 00:32:05.694$ the bridge and that it's not part of

NOTE Confidence: 0.4833358

 $00:32:05.694 \longrightarrow 00:32:07.241$ the same repair network as LEM twos.

 $00:32:07.250 \longrightarrow 00:32:08.370$ This makes sense to us.

NOTE Confidence: 0.36765093

 $00{:}32{:}10.890 \dashrightarrow 00{:}32{:}13.738$ I also want to point out that while

NOTE Confidence: 0.36765093

00:32:13.738 --> 00:32:16.047 though that work is in UWB ones,

NOTE Confidence: 0.36765093

 $00:32:16.050 \longrightarrow 00:32:18.642$ UDO in the lab has also been looking

NOTE Confidence: 0.36765093

 $00:32:18.642 \longrightarrow 00:32:21.394$ at a model of BRCA 1 deficient

NOTE Confidence: 0.36765093

 $00:32:21.394 \longrightarrow 00:32:23.010$ triple negative breast cancer.

NOTE Confidence: 0.36765093

 $00:32:23.010 \longrightarrow 00:32:24.258$ And so these again are cells

NOTE Confidence: 0.36765093

 $00:32:24.258 \longrightarrow 00:32:25.090$ treated with a laparib.

NOTE Confidence: 0.36765093

 $00:32:25.090 \longrightarrow 00:32:27.250$ This is just showing you the Dappy staining.

NOTE Confidence: 0.36765093

 $00:32:27.250 \longrightarrow 00:32:29.383$ I just want to this I think is a

NOTE Confidence: 0.36765093

 $00{:}32{:}29.383 \dashrightarrow 00{:}32{:}31.204$ beautiful example of pointing out that

NOTE Confidence: 0.36765093

 $00:32:31.204 \longrightarrow 00:32:33.067$ even when we can't really perceive

NOTE Confidence: 0.36765093

 $00{:}32{:}33.067 \dashrightarrow 00{:}32{:}35.089$ these bridges in the DNA stain,

NOTE Confidence: 0.36765093

 $00:32:35.090 \longrightarrow 00:32:36.168$ these ones are a little bit earlier.

NOTE Confidence: 0.36765093

00:32:36.170 --> 00:32:37.843 So you can still kind of see

00:32:37.843 --> 00:32:39.250 faintly that there's DNA staining.

NOTE Confidence: 0.36765093

 $00:32:39.250 \longrightarrow 00:32:41.128$ You can appreciate the changes in

NOTE Confidence: 0.36765093

00:32:41.128 --> 00:32:43.168 nuclear shape that are tied to this,

NOTE Confidence: 0.36765093

 $00:32:43.170 \longrightarrow 00:32:44.595$ just like those heart-shaped nuclei

NOTE Confidence: 0.36765093

00:32:44.595 --> 00:32:46.963 in that first movie that I showed you

NOTE Confidence: 0.36765093

 $00:32:46.963 \longrightarrow 00:32:48.448$ with the nuclear localization signal.

NOTE Confidence: 0.36765093

 $00:32:48.450 \longrightarrow 00:32:50.320$ So there's there's actually 2

NOTE Confidence: 0.36765093

 $00:32:50.320 \longrightarrow 00:32:52.707$ hallmarks we think that we can use

NOTE Confidence: 0.36765093

 $00{:}32{:}52.707 \dashrightarrow 00{:}32{:}54.730$ as essentially I know proxies for

NOTE Confidence: 0.36765093

 $00:32:54.730 \longrightarrow 00:32:56.530$ the presence of these bridges.

NOTE Confidence: 0.36765093

 $00:32:56.530 \longrightarrow 00:32:58.469$ One of them is the kind of

NOTE Confidence: 0.36765093

 $00:32:58.469 \longrightarrow 00:33:00.009$ orientation of these two nuclei.

NOTE Confidence: 0.36765093

 $00{:}33{:}00.010 \dashrightarrow 00{:}33{:}01.762$ But the other is that there are these

NOTE Confidence: 0.36765093

 $00:33:01.762 \longrightarrow 00:33:03.122$ classic changes in nuclear shape that

NOTE Confidence: 0.36765093

 $00:33:03.122 \longrightarrow 00:33:04.690$ we see that are coincident with this.

NOTE Confidence: 0.36765093

 $00:33:04.690 \longrightarrow 00:33:06.184$ And this may become relevant if

 $00{:}33{:}06.184 \dashrightarrow 00{:}33{:}07.924$ we think about whether we can use

NOTE Confidence: 0.36765093

 $00:33:07.924 \longrightarrow 00:33:09.079$ the prevalence of these structures

NOTE Confidence: 0.36765093

 $00:33:09.079 \longrightarrow 00:33:10.050$ as a biomarker,

NOTE Confidence: 0.36765093

00:33:10.050 --> 00:33:12.507 which is one of our kind of

NOTE Confidence: 0.36765093

00:33:12.507 --> 00:33:13.560 long term interests.

NOTE Confidence: 0.36765093

00:33:13.560 --> 00:33:15.300 This is just showing you that

NOTE Confidence: 0.36765093

 $00:33:15.300 \longrightarrow 00:33:16.750$ in this MDA 436 line,

NOTE Confidence: 0.36765093

 $00{:}33{:}16.750 \dashrightarrow 00{:}33{:}18.490$ preliminarily what we see is that

NOTE Confidence: 0.36765093

 $00:33:18.490 \longrightarrow 00:33:19.962$ there's a dose dependent increase

NOTE Confidence: 0.36765093

00:33:19.962 --> 00:33:21.991 in the number of cells with these

NOTE Confidence: 0.36765093

 $00{:}33{:}21.991 \dashrightarrow 00{:}33{:}23.755$ bridges in response to a laparib,

NOTE Confidence: 0.36765093

 $00{:}33{:}23.760 \dashrightarrow 00{:}33{:}25.923$ whereas we don't see this in a

NOTE Confidence: 0.36765093

 $00{:}33{:}25.923 \dashrightarrow 00{:}33{:}27.571$ different triple negative line that's

NOTE Confidence: 0.36765093

 $00{:}33{:}27.571 \dashrightarrow 00{:}33{:}29.557$ BRCA 1 proficient and HR proficient.

NOTE Confidence: 0.5707516

 $00:33:32.040 \longrightarrow 00:33:34.744$ So I've shown you this that we likely

 $00:33:34.744 \longrightarrow 00:33:36.839$ have these persistent bridges,

NOTE Confidence: 0.5707516

 $00:33:36.840 \longrightarrow 00:33:38.960$ they accumulate in the context of a laparib,

NOTE Confidence: 0.5707516

 $00:33:38.960 \longrightarrow 00:33:40.104$ they recruit C gas.

NOTE Confidence: 0.5707516

 $00:33:40.104 \longrightarrow 00:33:41.534$ But is there actually activation

NOTE Confidence: 0.5707516

 $00:33:41.534 \longrightarrow 00:33:43.228$ of the innate immune pathway?

NOTE Confidence: 0.5707516

 $00:33:43.230 \longrightarrow 00:33:45.372$ Just to remind you that the canonical

NOTE Confidence: 0.5707516

 $00{:}33{:}45.372 \dashrightarrow 00{:}33{:}47.457$ pathway is that C gas produces

NOTE Confidence: 0.5707516

00:33:47.457 --> 00:33:49.302 C gamp which activates sting

NOTE Confidence: 0.5707516

 $00:33:49.302 \longrightarrow 00:33:51.006$ which phosphorylates TDK one and

NOTE Confidence: 0.5707516

 $00{:}33{:}51.006 \dashrightarrow 00{:}33{:}52.806$ IRF 3 and leads to interferon

NOTE Confidence: 0.5707516

 $00{:}33{:}52.806 \dashrightarrow 00{:}33{:}55.310$ stimulated gene expression.

NOTE Confidence: 0.5707516

 $00:33:55.310 \longrightarrow 00:33:57.515$ So if we look at the GWB one cells

NOTE Confidence: 0.5707516

00:33:57.515 --> 00:33:59.772 in the presence of a lab rib

NOTE Confidence: 0.5707516

 $00{:}33{:}59.772 \dashrightarrow 00{:}34{:}01.670$ compared to the vehicle control,

NOTE Confidence: 0.5707516

 $00:34:01.670 \longrightarrow 00:34:03.638$ we don't actually see the level

NOTE Confidence: 0.5707516

00:34:03.638 --> 00:34:04.950 of TBK one phosphorylation,

 $00:34:04.950 \longrightarrow 00:34:05.870$ much of an effect.

NOTE Confidence: 0.5707516

00:34:05.870 --> 00:34:08.349 But if we look at IRF 3 phosphorylation,

NOTE Confidence: 0.5707516

 $00:34:08.350 \longrightarrow 00:34:11.724$ we see that there is a stimulation

NOTE Confidence: 0.5707516

 $00:34:11.724 \longrightarrow 00:34:14.020$ of the phosphorylation of IRF 3.

NOTE Confidence: 0.5707516

 $00:34:14.020 \longrightarrow 00:34:15.940$ And if we look at the downstream consequence,

NOTE Confidence: 0.5707516

 $00{:}34{:}15.940 \dashrightarrow 00{:}34{:}18.005$ which is interferon stimulated gene

NOTE Confidence: 0.5707516

00:34:18.005 --> 00:34:20.058 expression, just picking two of those genes,

NOTE Confidence: 0.5707516

 $00:34:20.060 \longrightarrow 00:34:21.775$ we do see that we can stimulate.

NOTE Confidence: 0.5707516

 $00{:}34{:}21.780 \dashrightarrow 00{:}34{:}23.664$ We can see stimulation of interferon

NOTE Confidence: 0.5707516

 $00:34:23.664 \longrightarrow 00:34:25.297$ stimulated genes with the addition

NOTE Confidence: 0.5707516

 $00:34:25.297 \longrightarrow 00:34:27.268$ of ELABORA in this cell line.

NOTE Confidence: 0.5707516

00:34:27.268 --> 00:34:29.260 And just to point out this,

NOTE Confidence: 0.5707516

 $00:34:29.260 \longrightarrow 00:34:31.861$ how much of A signal we get does depend

NOTE Confidence: 0.5707516

 $00:34:31.861 \longrightarrow 00:34:34.699$ on how intact the C gasting pathway is.

NOTE Confidence: 0.5707516

00:34:34.700 --> 00:34:36.800 And many tumors have an activated

 $00:34:36.800 \longrightarrow 00:34:38.648$ C gas expression likely because

NOTE Confidence: 0.5707516

 $00{:}34{:}38.648 \dashrightarrow 00{:}34{:}40.578$ there is selection against the

NOTE Confidence: 0.5707516

 $00{:}34{:}40.578 \dashrightarrow 00{:}34{:}42.560$ pathway that I'm talking about.

NOTE Confidence: 0.5707516

 $00:34:42.560 \longrightarrow 00:34:44.315$ But these cells do as you can see here,

NOTE Confidence: 0.5707516

 $00:34:44.320 \longrightarrow 00:34:47.120$ they do express sea gas and sting.

NOTE Confidence: 0.5707516

 $00:34:47.120 \longrightarrow 00:34:48.877$ But this is about as much stimulation

NOTE Confidence: 0.5707516

00:34:48.877 --> 00:34:50.868 as we can probably get in this

NOTE Confidence: 0.5707516

 $00:34:50.868 \longrightarrow 00:34:52.632$ line because this is an experiment

NOTE Confidence: 0.5707516

 $00{:}34{:}52.692 \dashrightarrow 00{:}34{:}54.242$ where we've just transfected DNA

NOTE Confidence: 0.5707516

 $00:34:54.242 \longrightarrow 00:34:56.047$ to drive an innate immune response.

NOTE Confidence: 0.5707516

 $00{:}34{:}56.047 \dashrightarrow 00{:}34{:}57.776$ This is the two people using this

NOTE Confidence: 0.5707516

 $00:34:57.776 \longrightarrow 00:34:59.239$ in this field all the time.

NOTE Confidence: 0.5707516

 $00:34:59.240 \longrightarrow 00:35:01.116$ And we get a pretty similar degree

NOTE Confidence: 0.5707516

 $00:35:01.116 \longrightarrow 00:35:02.909$ of stimulation as we get with

NOTE Confidence: 0.5707516

 $00:35:02.909 \longrightarrow 00:35:03.839$ the elaborate treatment.

NOTE Confidence: 0.5707516

 $00:35:03.840 \longrightarrow 00:35:05.870$ So that may be kind of the top of what

 $00:35:05.928 \longrightarrow 00:35:08.056$ we can get in this particular cell line.

NOTE Confidence: 0.5707516

 $00:35:08.056 \longrightarrow 00:35:10.360$ So we do think although this is only

NOTE Confidence: 0.5707516

00:35:10.360 --> 00:35:12.265 about four fold increase longitude

NOTE Confidence: 0.5707516

 $00:35:12.265 \longrightarrow 00:35:15.209$ full change of two that this is that

NOTE Confidence: 0.5707516

00:35:15.209 --> 00:35:17.141 this is a pretty strong response

NOTE Confidence: 0.5707516

 $00:35:17.141 \longrightarrow 00:35:18.520$ for this cell type.

NOTE Confidence: 0.5707516

 $00:35:18.520 \longrightarrow 00:35:22.152$ So does the you know does this the

NOTE Confidence: 0.5707516

 $00:35:22.152 \longrightarrow 00:35:24.825$ response actually require C gas that

NOTE Confidence: 0.5707516

 $00{:}35{:}24.825 \dashrightarrow 00{:}35{:}26.600$ I'm showing you this stimulation

NOTE Confidence: 0.5707516

 $00:35:26.600 \longrightarrow 00:35:28.919$ of this innate immune pathway.

NOTE Confidence: 0.5707516

 $00{:}35{:}28.920 {\:{\mbox{--}}\!>} 00{:}35{:}31.188$ So now we're just doing an experiment

NOTE Confidence: 0.5707516

 $00:35:31.188 \dashrightarrow 00:35:32.906$ where we're knocking down C gas

NOTE Confidence: 0.5707516

 $00{:}35{:}32.906 \dashrightarrow 00{:}35{:}34.783$ and you can see the knock down by

NOTE Confidence: 0.5707516

00:35:34.783 --> 00:35:36.295 qPCR to the C gas gene Here.

NOTE Confidence: 0.5707516

 $00:35:36.300 \longrightarrow 00:35:37.338$ I'll just walk you through this.

 $00:35:37.340 \longrightarrow 00:35:38.966$ This is the same stimulation that

NOTE Confidence: 0.5707516

 $00{:}35{:}38.966 \dashrightarrow 00{:}35{:}40.865$ we saw of these two genes with

NOTE Confidence: 0.5707516

 $00:35:40.865 \longrightarrow 00:35:42.377$ the addition of a lab rib.

NOTE Confidence: 0.5707516

 $00:35:42.380 \longrightarrow 00:35:45.138$ If we now knock down C gas,

NOTE Confidence: 0.5707516

 $00:35:45.140 \longrightarrow 00:35:47.606$ what we can see is that this does to

NOTE Confidence: 0.5707516

00:35:47.606 --> 00:35:49.820 some extent limit the activation.

NOTE Confidence: 0.5707516

 $00:35:49.820 \longrightarrow 00:35:52.020$ But to what extent that is we're not,

NOTE Confidence: 0.5707516

 $00:35:52.020 \longrightarrow 00:35:53.544$ we're not where I would say

NOTE Confidence: 0.5707516

 $00{:}35{:}53.544 \dashrightarrow 00{:}35{:}55.300$ where it's unclear yet whether C

NOTE Confidence: 0.5707516

 $00:35:55.300 \longrightarrow 00:35:56.660$ gas is completely responsible.

NOTE Confidence: 0.5707516

 $00:35:56.660 \longrightarrow 00:35:58.428$ We're trying to be kind of very agnostic

NOTE Confidence: 0.5707516

 $00:35:58.428 \longrightarrow 00:35:59.780$ about what is lying downstream.

NOTE Confidence: 0.5707516

 $00:35:59.780 \longrightarrow 00:36:01.600$ And so one of the things we're

NOTE Confidence: 0.5707516

00:36:01.600 --> 00:36:03.269 doing is generating C gas knockout

NOTE Confidence: 0.5707516

 $00:36:03.269 \longrightarrow 00:36:04.925$ Isagenix of these cell lines to

NOTE Confidence: 0.5707516

 $00:36:04.925 \longrightarrow 00:36:06.699$ really look at how much sea gas

 $00:36:06.699 \longrightarrow 00:36:07.659$ is important for this

NOTE Confidence: 0.531161

 $00{:}36{:}07.660 \dashrightarrow 00{:}36{:}09.740$ response and also of course

NOTE Confidence: 0.531161

 $00:36:09.740 \longrightarrow 00:36:11.820$ for the cell death mechanism.

NOTE Confidence: 0.531161

 $00:36:11.820 \longrightarrow 00:36:13.720$ One of the ideas that I set up was that

NOTE Confidence: 0.531161

 $00{:}36{:}13.768 \dashrightarrow 00{:}36{:}15.568$ this nuclear envelope repair network

NOTE Confidence: 0.531161

 $00:36:15.568 \longrightarrow 00:36:17.368$ could be antagonizing surveillance by

NOTE Confidence: 0.531161

00:36:17.421 --> 00:36:19.290 the innate immune system and we have

NOTE Confidence: 0.531161

 $00:36:19.290 \longrightarrow 00:36:20.970$ some evidence that that's the case.

NOTE Confidence: 0.531161

 $00:36:20.970 \longrightarrow 00:36:22.420$ So just to remind you,

NOTE Confidence: 0.531161

 $00:36:22.420 \longrightarrow 00:36:24.093$ the idea is that Bath and this

NOTE Confidence: 0.531161

 $00{:}36{:}24.093 \dashrightarrow 00{:}36{:}25.905$ LEM two protein come in to recruit

NOTE Confidence: 0.531161

 $00{:}36{:}25.905 \dashrightarrow 00{:}36{:}27.805$ escorts to seal these breaks in the

NOTE Confidence: 0.531161

 $00{:}36{:}27.805 \dashrightarrow 00{:}36{:}29.235$ nuclear envelope and this limits

NOTE Confidence: 0.531161

 $00{:}36{:}29.235 \dashrightarrow 00{:}36{:}30.966$ sea gas access and activation.

NOTE Confidence: 0.531161

 $00:36:30.966 \longrightarrow 00:36:34.482$ So here is an experiment where

 $00:36:34.482 \longrightarrow 00:36:37.488$ we have used siRNA to knock down

NOTE Confidence: 0.531161

 $00:36:37.488 \longrightarrow 00:36:39.360$ the bath protein to test this.

NOTE Confidence: 0.531161

 $00:36:39.360 \longrightarrow 00:36:41.684$ So again here you can see the

NOTE Confidence: 0.531161

 $00:36:41.684 \longrightarrow 00:36:43.057$ interferon stimulated gene expression

NOTE Confidence: 0.531161

 $00:36:43.057 \longrightarrow 00:36:45.319$ in a lab with elaborative treatment.

NOTE Confidence: 0.531161

 $00:36:45.320 \longrightarrow 00:36:47.854$ This is again in the UWB 1289 cells.

NOTE Confidence: 0.531161

00:36:47.854 --> 00:36:48.241 Interestingly,

NOTE Confidence: 0.531161

 $00:36:48.241 \longrightarrow 00:36:50.176$ and consistent with another study

NOTE Confidence: 0.531161

 $00:36:50.176 \longrightarrow 00:36:51.650$ in the literature,

NOTE Confidence: 0.531161

00:36:51.650 --> 00:36:53.168 if you just knock down Bath,

NOTE Confidence: 0.531161

 $00{:}36{:}53.170 \dashrightarrow 00{:}36{:}55.432$ you also get a stimulation of

NOTE Confidence: 0.531161

 $00:36:55.432 \longrightarrow 00:36:56.563$ an immune signaling,

NOTE Confidence: 0.531161

 $00:36:56.570 \longrightarrow 00:36:58.100$ which suggests that just knocking

NOTE Confidence: 0.531161

 $00:36:58.100 \longrightarrow 00:36:59.979$ down bath and removing it can

NOTE Confidence: 0.531161

 $00:36:59.979 \longrightarrow 00:37:01.449$ always stimulate some sea gas.

NOTE Confidence: 0.531161

 $00:37:01.450 \longrightarrow 00:37:03.858$ And that may be as cells are reforming

 $00{:}37{:}03.858 \dashrightarrow 00{:}37{:}05.919$ their nuclear envelope or some other

NOTE Confidence: 0.531161

 $00:37:05.919 \longrightarrow 00:37:08.007$ aspect of the normal cell Physiology.

NOTE Confidence: 0.531161

00:37:08.010 --> 00:37:08.270 However,

NOTE Confidence: 0.531161

 $00:37:08.270 \longrightarrow 00:37:10.090$ if we now add a lab rib,

NOTE Confidence: 0.531161

 $00:37:10.090 \longrightarrow 00:37:11.770$ we can boost this even further,

NOTE Confidence: 0.531161

 $00:37:11.770 \dashrightarrow 00:37:14.010$ suggesting that there's a synergy

NOTE Confidence: 0.531161

00:37:14.010 --> 00:37:15.662 synergistic effect of knocking

NOTE Confidence: 0.531161

 $00{:}37{:}15.662 \dashrightarrow 00{:}37{:}18.510$ down Bath and adding a lab rib,

NOTE Confidence: 0.531161

 $00:37:18.510 \longrightarrow 00:37:20.883$ which suggests that a lab rib actually

NOTE Confidence: 0.531161

 $00:37:20.883 \longrightarrow 00:37:22.612$ precipitates these kind of breaks

NOTE Confidence: 0.531161

 $00{:}37{:}22.612 \dashrightarrow 00{:}37{:}24.252$ in the nuclear envelope because

NOTE Confidence: 0.531161

 $00{:}37{:}24.252 \dashrightarrow 00{:}37{:}25.950$ of these entangled chromosomes.

NOTE Confidence: 0.531161

 $00{:}37{:}25.950 \dashrightarrow 00{:}37{:}27.390$ And then normally Bath would

NOTE Confidence: 0.531161

 $00:37:27.390 \longrightarrow 00:37:28.542$ be suppressing the signaling

NOTE Confidence: 0.531161

 $00:37:28.542 \longrightarrow 00:37:29.470$ downstream of that event.

 $00:37:29.470 \longrightarrow 00:37:30.270$ But when it's not there,

NOTE Confidence: 0.531161

00:37:30.270 --> 00:37:32.466 we get more C gas expression.

NOTE Confidence: 0.531161

 $00:37:32.470 \longrightarrow 00:37:34.110$ So this is consistent with

NOTE Confidence: 0.531161

 $00:37:34.110 \longrightarrow 00:37:35.422$ that kind of antagonism.

NOTE Confidence: 0.633801

00:37:37.470 --> 00:37:40.364 So I just want to show you just briefly

NOTE Confidence: 0.633801

00:37:40.364 --> 00:37:41.860 I because it's just you know we're cell

NOTE Confidence: 0.633801

 $00:37:41.905 \longrightarrow 00:37:43.345$ biologists so we love to look at things.

NOTE Confidence: 0.633801

 $00:37:43.350 \longrightarrow 00:37:44.745$ This is this really cool

NOTE Confidence: 0.633801

 $00:37:44.745 \longrightarrow 00:37:46.140$ reconstruction of what one of

NOTE Confidence: 0.633801

00:37:46.193 --> 00:37:47.945 these bridges looks like up close.

NOTE Confidence: 0.633801

00:37:47.950 --> 00:37:50.062 And I bring it up because the protein

NOTE Confidence: 0.633801

 $00:37:50.062 \longrightarrow 00:37:52.456$ man one which is in yellow is actually

NOTE Confidence: 0.633801

 $00:37:52.456 \dashrightarrow 00:37:54.778$ localized to the mid body and the protein

NOTE Confidence: 0.633801

 $00:37:54.778 \longrightarrow 00:37:56.710$ LEM 2 which is that nuclear repair

NOTE Confidence: 0.633801

 $00:37:56.769 \longrightarrow 00:37:58.869$ protein you can see along this bridge.

NOTE Confidence: 0.633801

 $00:37:58.870 \longrightarrow 00:38:00.290$ But you can see they're

 $00:38:00.290 \longrightarrow 00:38:01.426$ actually in distinct regions.

NOTE Confidence: 0.633801

 $00{:}38{:}01.430 \dashrightarrow 00{:}38{:}04.014$ As I mentioned LEM two is likely to

NOTE Confidence: 0.633801

 $00:38:04.014 \longrightarrow 00:38:06.582$ be along the regions of the bridge

NOTE Confidence: 0.633801

 $00:38:06.582 \longrightarrow 00:38:08.835$ that that are ruptured and actually

NOTE Confidence: 0.633801

 $00:38:08.835 \longrightarrow 00:38:11.739$ man one is sitting on the mid body.

NOTE Confidence: 0.633801

 $00:38:11.740 \longrightarrow 00:38:14.276$ And so one other area that that

NOTE Confidence: 0.633801

00:38:14.276 --> 00:38:16.292 we're interested in looking into is

NOTE Confidence: 0.633801

 $00:38:16.292 \longrightarrow 00:38:18.827$ there is a known checkpoint that

NOTE Confidence: 0.633801

 $00{:}38{:}18.827 \dashrightarrow 00{:}38{:}21.257$ controls whether cells do abscission.

NOTE Confidence: 0.633801

00:38:21.260 --> 00:38:23.354 That's does seems to be downstream

NOTE Confidence: 0.633801

 $00:38:23.354 \longrightarrow 00:38:24.750$ of surveilling whether there's

NOTE Confidence: 0.633801

 $00{:}38{:}24.809 \dashrightarrow 00{:}38{:}26.185$ been chromosome entanglements and

NOTE Confidence: 0.633801

 $00:38:26.185 \dashrightarrow 00:38:28.249$ this is regulated by Aurora B,

NOTE Confidence: 0.633801

 $00:38:28.250 \longrightarrow 00:38:29.458$ which is interesting because

NOTE Confidence: 0.633801

 $00:38:29.458 \longrightarrow 00:38:30.968$ the Aurora kinases have also

 $00:38:30.968 \longrightarrow 00:38:32.449$ been interesting clinically,

NOTE Confidence: 0.633801

 $00{:}38{:}32.450 \dashrightarrow 00{:}38{:}35.434$ although I think I've not been so far

NOTE Confidence: 0.633801

 $00:38:35.434 \longrightarrow 00:38:37.810$ really terribly successful clinically.

NOTE Confidence: 0.633801

 $00:38:37.810 \longrightarrow 00:38:40.458$ But I think that this is one context

NOTE Confidence: 0.633801

 $00:38:40.458 \longrightarrow 00:38:42.516$ where thinking about how Aurora B

NOTE Confidence: 0.633801

 $00:38:42.516 \longrightarrow 00:38:44.502$ might impact these events and be

NOTE Confidence: 0.633801

 $00:38:44.574 \longrightarrow 00:38:46.849$ involved would be very interesting.

NOTE Confidence: 0.633801

 $00:38:46.850 \longrightarrow 00:38:49.685$ So that and that is a reason why you

NOTE Confidence: 0.633801

 $00{:}38{:}49.685 {\:{\circ}{\circ}{\circ}}>00{:}38{:}51.971$ get these doublet cells that are

NOTE Confidence: 0.633801

 $00:38:51.971 \longrightarrow 00:38:53.693$ binucleate is because there has been

NOTE Confidence: 0.633801

 $00{:}38{:}53.693 \dashrightarrow 00{:}38{:}55.669$ an obscision failure downstream of

NOTE Confidence: 0.633801

 $00{:}38{:}55.669 {\:{\mbox{--}}}{>} 00{:}38{:}57.709$ the failure to segregate chromosomes.

NOTE Confidence: 0.633801

 $00:38:57.710 \longrightarrow 00:38:59.730$ And so that's something that

NOTE Confidence: 0.633801

 $00:38:59.730 \longrightarrow 00:39:01.750$ we're interested in in pursuing.

NOTE Confidence: 0.633801

 $00:39:01.750 \longrightarrow 00:39:02.245$ OK.

NOTE Confidence: 0.633801

 $00:39:02.245 \dashrightarrow 00:39:06.388$ So I just wanted to come back to this

 $00:39:06.388 \longrightarrow 00:39:08.422$ idea that these nuclear integrity defects

NOTE Confidence: 0.633801

 $00:39:08.422 \longrightarrow 00:39:11.031$ are the OR and these mitotic errors

NOTE Confidence: 0.633801

 $00:39:11.031 \longrightarrow 00:39:12.901$ and then nuclear integrity defects.

NOTE Confidence: 0.633801

00:39:12.910 --> 00:39:13.514 Could this,

NOTE Confidence: 0.633801

 $00:39:13.514 \longrightarrow 00:39:15.628$ could this be something that we actually

NOTE Confidence: 0.633801

 $00:39:15.628 \longrightarrow 00:39:17.656$ take advantage of as a biomarker?

NOTE Confidence: 0.633801

 $00:39:17.656 \longrightarrow 00:39:19.366$ This is something that we're

NOTE Confidence: 0.633801

00:39:19.366 --> 00:39:21.199 really is very preliminary,

NOTE Confidence: 0.633801

 $00:39:21.200 \longrightarrow 00:39:23.200$ but we're very interested in.

NOTE Confidence: 0.633801

 $00:39:23.200 \longrightarrow 00:39:24.880$ So you know as I've already pointed out,

NOTE Confidence: 0.633801

 $00:39:24.880 \longrightarrow 00:39:26.840$ when you have these persistent DNA bridges,

NOTE Confidence: 0.633801

00:39:26.840 --> 00:39:28.160 there is this relationship

NOTE Confidence: 0.633801

00:39:28.160 --> 00:39:29.480 between the two nuclei,

NOTE Confidence: 0.633801

 $00:39:29.480 \longrightarrow 00:39:32.189$ the result from that mitosis and there

NOTE Confidence: 0.633801

 $00:39:32.189 \longrightarrow 00:39:34.600$ are these changes in nuclear shape.

00:39:34.600 --> 00:39:39.160 These are actually H&E from the

NOTE Confidence: 0.633801

00:39:39.160 --> 00:39:42.346 10020 trial headed by Pat Larusso

NOTE Confidence: 0.633801

 $00:39:42.350 \longrightarrow 00:39:44.990$ and as well as Kurt Shopper.

NOTE Confidence: 0.633801

 $00:39:44.990 \longrightarrow 00:39:46.908$ And one of the things we've been

NOTE Confidence: 0.633801

 $00:39:46.908 \longrightarrow 00:39:49.196$ looking at is if we look at these

NOTE Confidence: 0.633801

00:39:49.196 --> 00:39:51.070 tumors in patients that are bracket

NOTE Confidence: 0.633801

00:39:51.070 --> 00:39:53.110 deficient treated with a laparib,

NOTE Confidence: 0.633801

 $00:39:53.110 \longrightarrow 00:39:55.110$ can we see these structures.

NOTE Confidence: 0.633801

 $00{:}39{:}55.110 --> 00{:}39{:}57.030$ And I think what we've been,

NOTE Confidence: 0.633801

 $00:39:57.030 \longrightarrow 00:39:59.232$ we did not expect to be able to see any of

NOTE Confidence: 0.633801

00:39:59.232 --> 00:40:01.184 these structures in H&E just to be hon-

est.

NOTE Confidence: 0.633801

 $00:40:01.190 \longrightarrow 00:40:04.435$ But but we're kind of excited that we

NOTE Confidence: 0.633801

 $00:40:04.435 \longrightarrow 00:40:06.654$ think that we can see these kind of

NOTE Confidence: 0.633801

 $00:40:06.654 \longrightarrow 00:40:08.109$ arrangements that are between cells.

NOTE Confidence: 0.633801

00:40:08.110 --> 00:40:08.458 You know,

 $00:40:08.458 \longrightarrow 00:40:09.502$ they were not the first people

NOTE Confidence: 0.633801

00:40:09.502 --> 00:40:10.468 to ever comment on this,

NOTE Confidence: 0.633801

 $00:40:10.470 \longrightarrow 00:40:12.756$ but I think we're connecting these

NOTE Confidence: 0.633801

 $00:40:12.756 \longrightarrow 00:40:14.280$ observations to an underlying

NOTE Confidence: 0.633801

00:40:14.347 --> 00:40:16.387 mechanism that may highlight why we

NOTE Confidence: 0.633801

00:40:16.387 --> 00:40:18.625 should be paying more attention to

NOTE Confidence: 0.633801

 $00{:}40{:}18.625 \dashrightarrow 00{:}40{:}20.670$ the prevalence of these structures.

NOTE Confidence: 0.633801

 $00:40:20.670 \longrightarrow 00:40:22.495$ I think particularly because micronuclei

NOTE Confidence: 0.633801

00:40:22.495 --> 00:40:24.590 really cannot be perceived in H&E,

NOTE Confidence: 0.633801

 $00:40:24.590 \longrightarrow 00:40:27.054$ this may be a mitotic error

NOTE Confidence: 0.633801

 $00:40:27.054 \longrightarrow 00:40:28.110$ that's much more

NOTE Confidence: 0.74551356

 $00:40:28.193 \longrightarrow 00:40:30.068$ easy to perceive in the

NOTE Confidence: 0.74551356

 $00:40:30.068 \longrightarrow 00:40:31.943$ tissue and so might this.

NOTE Confidence: 0.74551356

 $00:40:31.950 \longrightarrow 00:40:33.570$ I think and one really interesting

NOTE Confidence: 0.74551356

 $00:40:33.570 \longrightarrow 00:40:35.849$ part of this to me is that you

NOTE Confidence: 0.74551356

 $00{:}40{:}35.849 \dashrightarrow 00{:}40{:}37.279$ know these there's already an

 $00:40:37.279 \longrightarrow 00:40:39.021$ increase in these bridges just in

NOTE Confidence: 0.74551356

 $00{:}40{:}39.021 \dashrightarrow 00{:}40{:}40.803$ HR defective cells that you can

NOTE Confidence: 0.74551356

 $00:40:40.803 \longrightarrow 00:40:42.668$ push further with PARP inhibitors.

NOTE Confidence: 0.74551356

 $00:40:42.670 \longrightarrow 00:40:44.518$ But this could be a kind of non

NOTE Confidence: 0.74551356

 $00:40:44.518 \longrightarrow 00:40:46.260$ genomic way of assessing is there

NOTE Confidence: 0.74551356

 $00:40:46.260 \longrightarrow 00:40:48.096$ a homologous or combination or just

NOTE Confidence: 0.74551356

 $00:40:48.155 \longrightarrow 00:40:49.733$ DNA repair defect in this cell

NOTE Confidence: 0.74551356

 $00:40:49.733 \longrightarrow 00:40:51.498$ line Because I see these mitotic

NOTE Confidence: 0.74551356

00:40:51.498 --> 00:40:53.268 errors that actually are such,

NOTE Confidence: 0.74551356

 $00:40:53.270 \longrightarrow 00:40:55.286$ so large that they can be

NOTE Confidence: 0.74551356

 $00:40:55.286 \longrightarrow 00:40:56.630$ perceived even in HNA.

NOTE Confidence: 0.74551356

 $00:40:56.630 \longrightarrow 00:40:58.835$ To really validate that we

NOTE Confidence: 0.74551356

 $00:40:58.835 \longrightarrow 00:41:02.030$ have to be able to actually,

NOTE Confidence: 0.74551356

00:41:02.030 --> 00:41:02.588 you know,

NOTE Confidence: 0.74551356

 $00:41:02.588 \longrightarrow 00:41:03.704$ convince ourselves that these

 $00:41:03.704 \longrightarrow 00:41:05.087$ really are the structures that

NOTE Confidence: 0.74551356

 $00{:}41{:}05.087 \dashrightarrow 00{:}41{:}06.377$ I've been talking about that we

NOTE Confidence: 0.74551356

 $00:41:06.377 \longrightarrow 00:41:07.669$ see in tissue culture cells.

NOTE Confidence: 0.74551356

 $00:41:07.670 \longrightarrow 00:41:09.030$ And so to be able to do that,

NOTE Confidence: 0.74551356

 $00:41:09.030 \longrightarrow 00:41:10.927$ we are working on validating some of

NOTE Confidence: 0.74551356

 $00:41:10.927 \longrightarrow 00:41:12.825$ the antibodies that we've raised to

NOTE Confidence: 0.74551356

 $00:41:12.825 \longrightarrow 00:41:14.550$ these specific nuclear envelope proteins.

NOTE Confidence: 0.74551356

 $00{:}41{:}14.550 \dashrightarrow 00{:}41{:}16.083$ I mentioned it's really hard to see

NOTE Confidence: 0.74551356

 $00{:}41{:}16.083 \dashrightarrow 00{:}41{:}17.390$ these bridges even with DNA stain.

NOTE Confidence: 0.74551356

00:41:17.390 --> 00:41:19.126 You really have to have the right

NOTE Confidence: 0.74551356

 $00:41:19.126 \longrightarrow 00:41:20.642$ molecule that you're looking for and

NOTE Confidence: 0.74551356

 $00:41:20.642 \longrightarrow 00:41:22.126$ we think that these integral and a

NOTE Confidence: 0.74551356

 $00:41:22.126 \longrightarrow 00:41:23.588$ nuclear membrane proteins are exactly that.

NOTE Confidence: 0.74551356

 $00{:}41{:}23.590 \dashrightarrow 00{:}41{:}27.114$ And so we're hoping to validate

NOTE Confidence: 0.74551356

 $00:41:27.114 \longrightarrow 00:41:28.810$ that these structures indeed

NOTE Confidence: 0.74551356

 $00:41:28.810 \longrightarrow 00:41:30.930$ are representative of these DNA

00:41:30.996 --> 00:41:33.146 bridges because we can specifically

NOTE Confidence: 0.74551356

 $00:41:33.146 \longrightarrow 00:41:35.105$ identify them with these antibodies.

NOTE Confidence: 0.74551356

 $00:41:35.105 \longrightarrow 00:41:36.565$ And then in addition,

NOTE Confidence: 0.74551356

00:41:36.570 --> 00:41:38.163 I think just to be a bit agnostic also,

NOTE Confidence: 0.74551356

 $00{:}41{:}38.170 \dashrightarrow 00{:}41{:}41.035$ but other mitotic errors like

NOTE Confidence: 0.74551356

00:41:41.035 --> 00:41:43.200 Micronuclei LEM two in addition to

NOTE Confidence: 0.74551356

00:41:43.200 --> 00:41:44.790 being recruited to the ruptured

NOTE Confidence: 0.74551356

 $00:41:44.858 \longrightarrow 00:41:46.982$ regions of DNA breaks is also

NOTE Confidence: 0.74551356

 $00:41:46.982 \longrightarrow 00:41:49.170$ recruited strongly to ruptured Micronuclei.

NOTE Confidence: 0.74551356

 $00:41:49.170 \longrightarrow 00:41:50.770$ And so if we had this molecular tool,

NOTE Confidence: 0.74551356

 $00:41:50.770 \longrightarrow 00:41:53.605$ we might also be able to more

NOTE Confidence: 0.74551356

 $00:41:53.605 \longrightarrow 00:41:55.255$ accurately quantitate the prevalence

NOTE Confidence: 0.74551356

 $00{:}41{:}55.255 \dashrightarrow 00{:}41{:}57.330$ of micronuclei and chemical samples,

NOTE Confidence: 0.74551356

 $00:41:57.330 \longrightarrow 00:41:58.650$ which would be fantastic.

NOTE Confidence: 0.5170579

 $00:42:01.290 \longrightarrow 00:42:03.058$ And you know why I think that's so

00:42:03.058 --> 00:42:04.928 important and I just picked out one example,

NOTE Confidence: 0.5170579

 $00:42:04.930 \longrightarrow 00:42:06.694$ I could have picked out many of

NOTE Confidence: 0.5170579

 $00:42:06.694 \longrightarrow 00:42:09.198$ them is that there of course is an

NOTE Confidence: 0.5170579

 $00:42:09.198 \longrightarrow 00:42:10.888$ interest in expanding PARP inhibitors

NOTE Confidence: 0.5170579

00:42:10.945 --> 00:42:12.949 beyond you know breast and ovarian,

NOTE Confidence: 0.5170579

00:42:12.950 --> 00:42:15.148 Braca 1 and Braca 2 deficient patients,

NOTE Confidence: 0.5170579

00:42:15.150 --> 00:42:16.564 right. So I just pick and picked

NOTE Confidence: 0.5170579

 $00:42:16.564 \longrightarrow 00:42:18.213$ out one of these examples of the

NOTE Confidence: 0.5170579

00:42:18.213 --> 00:42:19.707 fact that there really are some

NOTE Confidence: 0.5170579

 $00:42:19.754 \longrightarrow 00:42:21.068$ amazing clinical responders.

NOTE Confidence: 0.5170579

 $00{:}42{:}21.070 \dashrightarrow 00{:}42{:}23.778$ This is in pancreatic cancer here.

NOTE Confidence: 0.5170579

 $00:42:23.778 \longrightarrow 00:42:26.346$ There has been selection for BRACA

NOTE Confidence: 0.5170579

 $00:42:26.346 \longrightarrow 00:42:27.630$ associated pancreatic cancer,

NOTE Confidence: 0.5170579

00:42:27.630 --> 00:42:28.870 but I think anecdotally,

NOTE Confidence: 0.5170579

 $00:42:28.870 \longrightarrow 00:42:31.089$ we know there are triple negative breast

NOTE Confidence: 0.5170579

 $00:42:31.089 \longrightarrow 00:42:32.913$ cancers that respond to PARP inhibitors

 $00:42:32.913 \longrightarrow 00:42:35.009$ even if we don't understand why.

NOTE Confidence: 0.5170579

 $00:42:35.010 \longrightarrow 00:42:37.120$ There are right very aggressive

NOTE Confidence: 0.5170579

 $00:42:37.120 \longrightarrow 00:42:37.964$ prostate cancers,

NOTE Confidence: 0.5170579

 $00:42:37.970 \longrightarrow 00:42:40.354$ A subset of which respond to PARP inhibitors

NOTE Confidence: 0.5170579

 $00:42:40.354 \longrightarrow 00:42:42.290$ even though we don't understand why.

NOTE Confidence: 0.5170579

 $00{:}42{:}42.290 \dashrightarrow 00{:}42{:}44.474$ And so we're hoping that these kind

NOTE Confidence: 0.5170579

00:42:44.474 --> 00:42:45.879 of biomarkers could potentially

NOTE Confidence: 0.5170579

 $00:42:45.879 \longrightarrow 00:42:47.894$ indicate where PARP inhibitors might

NOTE Confidence: 0.5170579

 $00:42:47.894 \longrightarrow 00:42:50.416$ be effective even when the molecular

NOTE Confidence: 0.5170579

 $00:42:50.416 \longrightarrow 00:42:52.526$ or genetic signature isn't understood.

NOTE Confidence: 0.7353201

00:42:54.610 --> 00:42:57.816 OK. So just to just to restate

NOTE Confidence: 0.7353201

 $00:42:57.816 \longrightarrow 00:43:00.310$ what I've told you today,

NOTE Confidence: 0.7353201

 $00{:}43{:}00.310 \dashrightarrow 00{:}43{:}01.890$ while Laparov enhances the prevalence

NOTE Confidence: 0.7353201

 $00:43:01.890 \longrightarrow 00:43:03.470$ of these persistent DNA bridges,

NOTE Confidence: 0.7353201

 $00:43:03.470 \longrightarrow 00:43:04.710$ there's already more in

 $00:43:04.710 \longrightarrow 00:43:05.950$ an HR deficient context.

NOTE Confidence: 0.7353201

 $00:43:05.950 \longrightarrow 00:43:08.169$ But you can push this further with

NOTE Confidence: 0.7353201

 $00:43:08.169 \longrightarrow 00:43:10.641$ PARP inhibitors and this does lead to

NOTE Confidence: 0.7353201

 $00:43:10.641 \longrightarrow 00:43:12.466$ activation of innate immune signaling.

NOTE Confidence: 0.7353201

00:43:12.470 --> 00:43:14.710 Their recruitment of bath and

NOTE Confidence: 0.7353201

 $00:43:14.710 \longrightarrow 00:43:16.950$ C gas may be antagonistic,

NOTE Confidence: 0.7353201

 $00:43:16.950 \longrightarrow 00:43:19.218$ but both are seem to be recruited

NOTE Confidence: 0.7353201

 $00:43:19.218 \longrightarrow 00:43:20.190$ to these bridges.

NOTE Confidence: 0.7353201

 $00{:}43{:}20.190 \dashrightarrow 00{:}43{:}21.910$ So that suggests that there

NOTE Confidence: 0.7353201

 $00:43:21.910 \longrightarrow 00:43:23.630$ many of them are ruptured.

NOTE Confidence: 0.7353201

 $00:43:23.630 \longrightarrow 00:43:25.574$ We're interested in whether

NOTE Confidence: 0.7353201

00:43:25.574 --> 00:43:27.518 just regulating disrupting this

NOTE Confidence: 0.7353201

 $00{:}43{:}27.518 \dashrightarrow 00{:}43{:}29.521$ nuclear envelope repair network

NOTE Confidence: 0.7353201

 $00:43:29.521 \longrightarrow 00:43:31.441$ could actually further stimulate

NOTE Confidence: 0.7353201

 $00:43:31.441 \longrightarrow 00:43:33.361$ the innate immune signaling

NOTE Confidence: 0.7353201

 $00:43:33.429 \longrightarrow 00:43:35.669$ downstream of these mitotic errors.

 $00:43:35.670 \longrightarrow 00:43:37.952$ And we're excited about the idea of

NOTE Confidence: 0.7353201

 $00{:}43{:}37.952 \dashrightarrow 00{:}43{:}39.996$ these persistent bridges could be an

NOTE Confidence: 0.7353201

00:43:39.996 --> 00:43:41.354 accessible hallmark of HR deficiency,

NOTE Confidence: 0.7353201

 $00:43:41.354 \longrightarrow 00:43:42.266$ which as I said,

NOTE Confidence: 0.7353201

 $00:43:42.270 \longrightarrow 00:43:45.922$ we poorly need in terms of what

NOTE Confidence: 0.7353201

 $00:43:45.922 \longrightarrow 00:43:47.666$ our next steps are and what

NOTE Confidence: 0.7353201

 $00:43:47.666 \longrightarrow 00:43:49.340$ we're focusing on at the moment,

NOTE Confidence: 0.7353201

 $00:43:49.340 \longrightarrow 00:43:51.074$ where we really need to understand

NOTE Confidence: 0.7353201

 $00:43:51.074 \longrightarrow 00:43:53.019$ if this is really the canonical

NOTE Confidence: 0.7353201

 $00{:}43{:}53.020 \dashrightarrow 00{:}43{:}55.174$ ISG expression is relevant here or

NOTE Confidence: 0.7353201

 $00{:}43{:}55.174 \dashrightarrow 00{:}43{:}57.092$ perhaps there's some other downstream

NOTE Confidence: 0.7353201

 $00:43:57.092 \longrightarrow 00:43:58.784$ consequence that's running in

NOTE Confidence: 0.7353201

 $00{:}43{:}58.784 \dashrightarrow 00{:}44{:}01.260$ parallel with the production of Isgs.

NOTE Confidence: 0.7353201

 $00:44:01.260 \longrightarrow 00:44:01.822$ That's important.

NOTE Confidence: 0.7353201

 $00:44:01.822 \longrightarrow 00:44:02.103$ Again,

00:44:02.103 --> 00:44:04.070 you get cell killing in a tumor

NOTE Confidence: 0.7353201

 $00:44:04.123 \longrightarrow 00:44:05.575$ cell intrinsic way in a dish.

NOTE Confidence: 0.7353201

 $00:44:05.580 \longrightarrow 00:44:07.869$ So we don't know if that's really

NOTE Confidence: 0.7353201

 $00:44:07.869 \longrightarrow 00:44:09.550$ a consequence directly of anything

NOTE Confidence: 0.7353201

 $00:44:09.550 \longrightarrow 00:44:11.135$ to do with ISG expression.

NOTE Confidence: 0.7353201

00:44:11.140 --> 00:44:13.926 And so that's something that we're exploring.

NOTE Confidence: 0.7353201

 $00{:}44{:}13.930 \dashrightarrow 00{:}44{:}16.110$ We're also taking both candidate

NOTE Confidence: 0.7353201

 $00:44:16.110 \longrightarrow 00:44:18.290$ approaches and unbiased screens to

NOTE Confidence: 0.7353201

 $00:44:18.357 \longrightarrow 00:44:20.583$ identify what are the factors required

NOTE Confidence: 0.7353201

 $00:44:20.583 \longrightarrow 00:44:22.850$ for the cell death in culture.

NOTE Confidence: 0.7353201

 $00{:}44{:}22.850 \dashrightarrow 00{:}44{:}24.383$ You in some ways you would have

NOTE Confidence: 0.7353201

 $00:44:24.383 \longrightarrow 00:44:26.014$ thought this would have come out of

NOTE Confidence: 0.7353201

 $00{:}44{:}26.014 \dashrightarrow 00{:}44{:}27.406$ CRISPR screens which have been done.

NOTE Confidence: 0.7353201

 $00:44:27.410 \longrightarrow 00:44:28.538$ But actually I think there are

NOTE Confidence: 0.7353201

 $00:44:28.538 \longrightarrow 00:44:29.954$ a lot of reasons to think that

NOTE Confidence: 0.7353201

 $00{:}44{:}29.954 \dashrightarrow 00{:}44{:}30.994$ those screens weren't really set

 $00:44:30.994 \longrightarrow 00:44:32.410$ up to identify this mechanism.

NOTE Confidence: 0.7353201

 $00:44:32.410 \longrightarrow 00:44:34.842$ And so that's one of the things that

NOTE Confidence: 0.7353201

 $00:44:34.842 \longrightarrow 00:44:36.909$ we're setting up to do at the moment.

NOTE Confidence: 0.7353201

00:44:36.910 --> 00:44:38.238 Again, we're cell biologists,

NOTE Confidence: 0.7353201

 $00:44:38.238 \longrightarrow 00:44:39.898$ so we're using correlative light

NOTE Confidence: 0.7353201

 $00:44:39.898 \longrightarrow 00:44:41.702$ and electron microscopy to really

NOTE Confidence: 0.7353201

00:44:41.702 --> 00:44:43.467 understand what's happening in these

NOTE Confidence: 0.7353201

00:44:43.467 --> 00:44:45.686 DNA bridges and also to and get

NOTE Confidence: 0.7353201

 $00:44:45.686 \longrightarrow 00:44:47.826$ information about the DNA structure.

NOTE Confidence: 0.7353201

 $00:44:47.830 \longrightarrow 00:44:49.998$ We can do that by looking at accessibility

NOTE Confidence: 0.7353201

 $00{:}44{:}49.998 \dashrightarrow 00{:}44{:}52.428$ to the TN 5 transpose ACE as an example,

NOTE Confidence: 0.7353201

 $00:44:52.430 \longrightarrow 00:44:54.670$ which is the basis for ATAC experiments,

NOTE Confidence: 0.7353201

 $00{:}44{:}54.670 \dashrightarrow 00{:}44{:}57.342$ but you can use that in a microscopy

NOTE Confidence: 0.7353201

 $00:44:57.342 \longrightarrow 00:44:58.579$ based experiment as well.

NOTE Confidence: 0.7353201

 $00:44:58.580 \longrightarrow 00:45:01.058$ And then we're working with our

00:45:01.058 --> 00:45:03.022 partners at AstraZeneca to really

NOTE Confidence: 0.7353201

 $00:45:03.022 \longrightarrow 00:45:05.549$ try to test whether we can use

NOTE Confidence: 0.7353201

 $00:45:05.549 \longrightarrow 00:45:08.152$ these bridges as a sa biomarker,

NOTE Confidence: 0.7353201

 $00:45:08.152 \longrightarrow 00:45:10.980$ you know at the very initial stages

NOTE Confidence: 0.7353201

 $00:45:10.980 \longrightarrow 00:45:12.258$ in a really well controlled system.

NOTE Confidence: 0.7353201

00:45:12.260 --> 00:45:14.004 So one of the things that they have

NOTE Confidence: 0.7353201

 $00:45:14.004 \longrightarrow 00:45:15.918$ is that they have xenograft models of

NOTE Confidence: 0.7353201

00:45:15.918 --> 00:45:17.961 of BRCA 1 deficient tumors which they

NOTE Confidence: 0.7353201

 $00{:}45{:}17.961 \dashrightarrow 00{:}45{:}19.935$ then treated those mice with a laparib.

NOTE Confidence: 0.7353201

00:45:19.940 --> 00:45:22.132 And so we have really nice kind of

NOTE Confidence: 0.7353201

 $00{:}45{:}22.132 \dashrightarrow 00{:}45{:}24.468$ ground truth data of HR deficient,

NOTE Confidence: 0.7353201

00:45:24.468 --> 00:45:25.460 HR proficient,

NOTE Confidence: 0.7353201

 $00:45:25.460 \longrightarrow 00:45:26.106$ you know,

NOTE Confidence: 0.7353201

 $00:45:26.106 \longrightarrow 00:45:28.044$ with and without treatment with a

NOTE Confidence: 0.7353201

 $00:45:28.044 \longrightarrow 00:45:29.394$ laparib or other PARP inhibitors.

NOTE Confidence: 0.7353201

 $00:45:29.394 \longrightarrow 00:45:31.662$ And so looking at the H and AE of

 $00:45:31.662 \longrightarrow 00:45:33.578$ those data sets and doing that in a

NOTE Confidence: 0.7353201

 $00:45:33.578 \longrightarrow 00:45:35.587$ blinded way will really help us to

NOTE Confidence: 0.7353201

 $00:45:35.587 \longrightarrow 00:45:36.809$ understand whether this is something

NOTE Confidence: 0.7353201

00:45:36.809 --> 00:45:38.087 that's going to be worth pursuing.

NOTE Confidence: 0.3837364

00:45:40.210 --> 00:45:42.314 All right. So I just like to thank

NOTE Confidence: 0.3837364

 $00:45:42.314 \longrightarrow 00:45:44.405$ the people who did the work and then

NOTE Confidence: 0.3837364

 $00:45:44.405 \longrightarrow 00:45:46.290$ I'm happy to take any questions.

NOTE Confidence: 0.3837364

 $00{:}45{:}46.290 \dashrightarrow 00{:}45{:}48.593$ We have a really great group working

NOTE Confidence: 0.3837364

 $00{:}45{:}48.593 \dashrightarrow 00{:}45{:}50.288$ on genome integrity in the lab.

NOTE Confidence: 0.3837364

 $00{:}45{:}50.290 \dashrightarrow 00{:}45{:}53.040$ Yuduo is a is a fellow much of what much

NOTE Confidence: 0.3837364

 $00{:}45{:}53.109 \dashrightarrow 00{:}45{:}55.701$ of what I showed you today is work from

NOTE Confidence: 0.3837364

 $00:45:55.701 \longrightarrow 00:45:58.610$ AJ Kozak who's a PhD student in the lab.

NOTE Confidence: 0.3837364

 $00{:}45{:}58.610 \dashrightarrow 00{:}45{:}59.985$ Carrie recently joined the team

NOTE Confidence: 0.3837364

 $00:45:59.985 \longrightarrow 00:46:02.005$ and she's going to be working on

NOTE Confidence: 0.3837364

 $00:46:02.005 \longrightarrow 00:46:03.485$ these screens for DNA repair.

 $00:46:03.490 \longrightarrow 00:46:05.940$ So we're we're we're almost getting sorry

NOTE Confidence: 0.3837364

 $00{:}46{:}05.940 \dashrightarrow 00{:}46{:}08.489$ not DNA repair screens to identify the

NOTE Confidence: 0.3837364

 $00:46:08.490 \longrightarrow 00:46:10.494$ the mechanisms of cell death downstream

NOTE Confidence: 0.3837364

 $00:46:10.494 \longrightarrow 00:46:12.768$ of PARP inhibitors in the cell models.

NOTE Confidence: 0.3837364

 $00:46:12.770 \longrightarrow 00:46:14.754$ And I'll say just joined the lab and

NOTE Confidence: 0.3837364

00:46:14.754 --> 00:46:16.601 he's going to try to get our our

NOTE Confidence: 0.3837364

00:46:16.601 --> 00:46:18.210 tissue part of this up and going.

NOTE Confidence: 0.3837364

 $00:46:18.210 \longrightarrow 00:46:21.130$ I'd also like to acknowledge Pat

NOTE Confidence: 0.3837364

00:46:21.130 --> 00:46:22.870 Larusso who who has really been

NOTE Confidence: 0.3837364

 $00:46:22.870 \longrightarrow 00:46:24.784$ essential and in all aspects of

NOTE Confidence: 0.3837364

 $00{:}46{:}24.784 \dashrightarrow 00{:}46{:}26.752$ getting us involved in this direction.

NOTE Confidence: 0.3837364

00:46:26.760 --> 00:46:29.315 It would not have happened without her

NOTE Confidence: 0.3837364

 $00:46:29.320 \longrightarrow 00:46:31.357$ and I'm happy to take any questions.

NOTE Confidence: 0.3837364

 $00:46:31.360 \longrightarrow 00:46:31.960$ Thanks.

NOTE Confidence: 0.26034585

 $00:46:38.460 \longrightarrow 00:46:42.252$ Yeah. Have you seen this

NOTE Confidence: 0.26034585

00:46:42.252 --> 00:46:44.899 type outside of other HRD

 $00:46:46.980 \longrightarrow 00:46:48.900$ such as what do you thinking

NOTE Confidence: 0.3960918375

 $00{:}46{:}51.740 \dashrightarrow 00{:}46{:}56.738$ Yeah I yeah I think we have not some

NOTE Confidence: 0.3960918375

00:46:56.738 --> 00:46:58.610 of the some of the data that I showed

NOTE Confidence: 0.3960918375

 $00:46:58.660 \longrightarrow 00:47:00.412$ you from the literature is strongly

NOTE Confidence: 0.3960918375

 $00:47:00.412 \longrightarrow 00:47:02.433$ suggestive that also in the contents of

NOTE Confidence: 0.3960918375

 $00:47:02.433 \longrightarrow 00:47:04.554$ bracket two we need mitosis to get cell

NOTE Confidence: 0.3960918375

00:47:04.554 --> 00:47:06.610 death you get innate immune signaling.

NOTE Confidence: 0.3960918375

 $00:47:06.610 \longrightarrow 00:47:08.464$ We have not, I should ask

NOTE Confidence: 0.3960918375

00:47:08.464 --> 00:47:10.170 Connor actually but I don't,

NOTE Confidence: 0.3960918375

 $00{:}47{:}10.170 \dashrightarrow 00{:}47{:}12.060$ I don't even think Connor we haven't

NOTE Confidence: 0.3960918375

00:47:12.060 --> 00:47:13.730 stained bracket 2 deficient cells.

NOTE Confidence: 0.3960918375

00:47:13.730 --> 00:47:15.464 So I don't think we've explicitly

NOTE Confidence: 0.3960918375

 $00{:}47{:}15.464 \dashrightarrow 00{:}47{:}17.462$ done that just cause we've we've been

NOTE Confidence: 0.3960918375

00:47:17.462 --> 00:47:19.510 focused more on BRCA one in our lab.

NOTE Confidence: 0.3960918375

 $00:47:19.510 \longrightarrow 00:47:21.708$ But I would be highly surprised if

00:47:21.708 --> 00:47:23.823 it wasn't the same in a probably

NOTE Confidence: 0.3960918375

 $00:47:23.823 \longrightarrow 00:47:25.870$ 2 or a BRCA 2 deficient line.

NOTE Confidence: 0.3960918375

 $00:47:25.870 \longrightarrow 00:47:28.190$ And and just to make the point you

NOTE Confidence: 0.3960918375

 $00:47:28.190 \longrightarrow 00:47:30.404$ know others have also seen similar

NOTE Confidence: 0.3960918375

 $00:47:30.404 \longrightarrow 00:47:32.750$ downstream effects for example of Taxol

NOTE Confidence: 0.3960918375

 $00:47:32.820 \longrightarrow 00:47:35.046$ treatment and actually have shown that

NOTE Confidence: 0.3960918375

 $00:47:35.046 \longrightarrow 00:47:37.390$ you know tumor cells that respond

NOTE Confidence: 0.3960918375

00:47:37.390 --> 00:47:40.110 to Taxol have intact C gas stings

NOTE Confidence: 0.3960918375

 $00:47:40.110 \longrightarrow 00:47:42.350$ signaling and those that don't do not.

NOTE Confidence: 0.3960918375

00:47:42.350 --> 00:47:44.780 So that I think that if this is not going

NOTE Confidence: 0.3960918375

 $00{:}47{:}44.842 \to 00{:}47{:}47.286$ to be even limited just to HR deficiency,

NOTE Confidence: 0.3960918375

 $00:47:47.286 \longrightarrow 00:47:50.135$ it's just one of the ways that honestly

NOTE Confidence: 0.3960918375

 $00{:}47{:}50.135 \dashrightarrow 00{:}47{:}52.685$ TAXOL HR deficiencies of HARP inhibitors

NOTE Confidence: 0.3960918375

 $00{:}47{:}52.685 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}47{:}55.680$ and and even a radiation probably could

NOTE Confidence: 0.3960918375

 $00:47:55.680 \longrightarrow 00:47:58.350$ all be stimulating the same pathway.

NOTE Confidence: 0.3960918375

 $00:47:58.350 \longrightarrow 00:48:00.694$ Yeah, as a fault.

 $00:48:00.694 \longrightarrow 00:48:03.141$ So I mean if if you're having an

NOTE Confidence: 0.3960918375

00:48:03.141 --> 00:48:04.955 inhibition of the main signaling,

NOTE Confidence: 0.3960918375

 $00:48:04.955 \longrightarrow 00:48:07.385$ would these cancers be potentially more

NOTE Confidence: 0.3960918375

00:48:07.385 --> 00:48:09.350 sensitive to alcoholic viruses or kind

NOTE Confidence: 0.3960918375

00:48:09.350 --> 00:48:11.593 of a you know alternative fall strategy?

NOTE Confidence: 0.3960918375

 $00{:}48{:}11.593 \dashrightarrow 00{:}48{:}14.239$ I think that's a great question.

NOTE Confidence: 0.3960918375

 $00:48:14.240 \longrightarrow 00:48:15.829$ And I think that as you can

NOTE Confidence: 0.3960918375

 $00:48:15.829 \longrightarrow 00:48:16.840$ see what we've done,

NOTE Confidence: 0.3960918375

00:48:16.840 --> 00:48:19.376 we've completely ignored right,

NOTE Confidence: 0.3960918375

 $00:48:19.376 \longrightarrow 00:48:22.896$ any of that, any of that crosstalk.

NOTE Confidence: 0.3960918375

 $00{:}48{:}22.896 \dashrightarrow 00{:}48{:}25.892$ And I and I think it's if you look

NOTE Confidence: 0.3960918375

 $00:48:25.892 \longrightarrow 00:48:27.676$ in the literature it's been kind of

NOTE Confidence: 0.3960918375

 $00{:}48{:}27.676 \dashrightarrow 00{:}48{:}29.041$ challenging and people who've tried

NOTE Confidence: 0.3960918375

 $00:48:29.041 \longrightarrow 00:48:31.036$ to use this even even not even to

NOTE Confidence: 0.3960918375

 $00:48:31.036 \longrightarrow 00:48:32.616$ the depth of what you just asked.

 $00:48:32.616 \longrightarrow 00:48:34.984$ But if you look at you know is

NOTE Confidence: 0.3960918375

00:48:34.984 --> 00:48:37.033 sting actually is sting signaling

NOTE Confidence: 0.3960918375

 $00{:}48{:}37.033 \dashrightarrow 00{:}48{:}39.553$ actually a tumor suppressive or a

NOTE Confidence: 0.3960918375

00:48:39.626 --> 00:48:41.703 tumor driving mechanism, right,

NOTE Confidence: 0.3960918375

 $00:48:41.703 \longrightarrow 00:48:43.818$ Because inflammation driven by sting

NOTE Confidence: 0.3960918375

 $00:48:43.818 \longrightarrow 00:48:46.517$ has also been suggested to be a driver,

NOTE Confidence: 0.3960918375 00:48:46.520 --> 00:48:46.793 right.

NOTE Confidence: 0.3960918375

00:48:46.793 --> 00:48:49.680 Is, is actually a tumor driver C gas I think.

NOTE Confidence: 0.3960918375

00:48:49.680 --> 00:48:52.980 And actually if you look at the number

NOTE Confidence: 0.3960918375

 $00:48:52.980 \longrightarrow 00:48:54.880$ of tumors that have inactivated

NOTE Confidence: 0.3960918375

00:48:54.880 --> 00:48:56.400 C gas versus sting,

NOTE Confidence: 0.3960918375

00:48:56.400 --> 00:48:57.992 very few inactivate sting,

NOTE Confidence: 0.3960918375

 $00:48:57.992 \longrightarrow 00:49:00.740$ the vast majority have inactivated C gas

NOTE Confidence: 0.3960918375

 $00:49:00.740 \longrightarrow 00:49:03.359$ if you just look across you know that map.

NOTE Confidence: 0.3960918375

 $00:49:03.360 \longrightarrow 00:49:05.889$ And so I do wonder if some of the

NOTE Confidence: 0.3960918375

00:49:05.889 --> 00:49:08.337 signaling we're seeing is C gas dependent,

 $00:49:08.340 \longrightarrow 00:49:09.765$ but maybe not strictly through

NOTE Confidence: 0.3960918375

 $00{:}49{:}09.765 \dashrightarrow 00{:}49{:}11.586$ sting or sting is more complicated

NOTE Confidence: 0.3960918375

 $00{:}49{:}11.586 \dashrightarrow 00{:}49{:}13.590$ because it's multiple roles and I

NOTE Confidence: 0.3960918375

 $00:49:13.590 \longrightarrow 00:49:15.477$ think that might be important to

NOTE Confidence: 0.3960918375

 $00:49:15.477 \longrightarrow 00:49:16.857$ tease out to think about.

NOTE Confidence: 0.3960918375

 $00:49:16.860 \longrightarrow 00:49:19.940$ Then how is this going to intersect

NOTE Confidence: 0.3960918375

00:49:19.940 --> 00:49:22.460 with approaches like oncolytic viruses.

NOTE Confidence: 0.3960918375

 $00:49:22.460 \longrightarrow 00:49:24.628$ So I think that's still one of the

NOTE Confidence: 0.3960918375

 $00:49:24.628 \longrightarrow 00:49:26.365$ confusions at the moment because

NOTE Confidence: 0.3960918375

 $00:49:26.365 \longrightarrow 00:49:28.633$ honestly there's very high profile papers

NOTE Confidence: 0.3960918375

 $00{:}49{:}28.633 \dashrightarrow 00{:}49{:}30.634$ saying you know sting agonists would be

NOTE Confidence: 0.3960918375

 $00:49:30.634 \longrightarrow 00:49:32.379$ great and sting agonists are terrible.

NOTE Confidence: 0.3960918375

00:49:32.380 --> 00:49:33.490 And so that's probably going

NOTE Confidence: 0.3960918375

 $00:49:33.490 \longrightarrow 00:49:34.378$ to be context dependent.

NOTE Confidence: 0.46254796 00:49:38.660 --> 00:49:38.900 Oh NOTE Confidence: 0.46254796 $00:49:41.580 \longrightarrow 00:49:42.300$ go go ahead I'll,

NOTE Confidence: 0.46254796

 $00:49:42.300 \longrightarrow 00:49:43.780$ I'll get the Mario and I'll get this.

NOTE Confidence: 0.46254796

 $00:49:43.780 \longrightarrow 00:49:48.195$ In the meantime are are there about

NOTE Confidence: 0.46254796

 $00:49:48.195 \longrightarrow 00:49:50.732$ cell lines that are HID deficient

NOTE Confidence: 0.46254796

 $00:49:50.732 \longrightarrow 00:49:54.110$ where you could look at a lab rib

NOTE Confidence: 0.46254796

 $00:49:54.110 \longrightarrow 00:49:56.450$ in one of these cell lines and

NOTE Confidence: 0.46254796

 $00{:}49{:}56.450 \dashrightarrow 00{:}50{:}01.665$ compromisers whether there's a role for

NOTE Confidence: 0.46254796

 $00:50:01.665 \longrightarrow 00:50:04.590$ the sting activation in the anti

NOTE Confidence: 0.46254796

 $00{:}50{:}04.590 {\:{\mbox{--}}\!>}\ 00{:}50{:}06.290$ tumor activity of bilateral because

NOTE Confidence: 0.46254796

 $00:50:06.290 \longrightarrow 00:50:08.723$ that that would be an easy way to

NOTE Confidence: 0.46254796

 $00:50:08.723 \dashrightarrow 00:50:11.010$ determine if if the immune activation,

NOTE Confidence: 0.46254796

 $00:50:11.010 \longrightarrow 00:50:13.538$ activation is is important

NOTE Confidence: 0.46254796

00:50:13.538 --> 00:50:15.090 or not really agree with you.

NOTE Confidence: 0.46254796

 $00:50:15.090 \longrightarrow 00:50:16.609$ So I think that is an

NOTE Confidence: 0.46254796

00:50:16.609 --> 00:50:17.043 excellent experiment.

NOTE Confidence: 0.46254796

 $00:50:17.050 \longrightarrow 00:50:17.956$ It is an experiment that needs

00:50:17.956 --> 00:50:19.130 to be done and it you're right,

NOTE Confidence: 0.46254796

00:50:19.130 --> 00:50:22.268 it's it's obvious and it's achievable.

NOTE Confidence: 0.46254796

00:50:22.270 --> 00:50:23.656 It hasn't been what our expertise

NOTE Confidence: 0.46254796

 $00:50:23.656 \longrightarrow 00:50:25.430$ has been in, but I agree with you

NOTE Confidence: 0.46254796

 $00{:}50{:}25.430 \dashrightarrow 00{:}50{:}26.510$ that that's exactly the right.

NOTE Confidence: 0.46254796

00:50:26.510 --> 00:50:27.968 So we really need some genetic

NOTE Confidence: 0.46254796

 $00:50:27.968 \longrightarrow 00:50:29.150$ models to be able to,

NOTE Confidence: 0.46254796

 $00:50:29.150 \longrightarrow 00:50:30.430$ to, to do that.

NOTE Confidence: 0.46254796

 $00{:}50{:}30.430 \dashrightarrow 00{:}50{:}33.082$ So I I completely agree Jeff has

NOTE Confidence: 0.46254796

 $00:50:33.082 \longrightarrow 00:50:35.186$ asked wholexome sequencing is

NOTE Confidence: 0.46254796

 $00{:}50{:}35.186 --> 00{:}50{:}37.950$ not as commonly performed as H&E,

NOTE Confidence: 0.46254796

 $00:50:37.950 \longrightarrow 00:50:39.774$ but he's curious which degree of

NOTE Confidence: 0.46254796

 $00{:}50{:}39.774 \dashrightarrow 00{:}50{:}40.990$ mutational signature derived from

NOTE Confidence: 0.46254796

 $00:50:41.042 \longrightarrow 00:50:42.534$ wholexome sequencing indicates the

NOTE Confidence: 0.46254796

 $00:50:42.534 \longrightarrow 00:50:43.653$ effective homologous recombination

 $00:50:43.653 \longrightarrow 00:50:45.747$ or is being used as a biomarker.

NOTE Confidence: 0.46254796

 $00:50:45.750 \longrightarrow 00:50:46.990$ So to Jeff's point, yes,

NOTE Confidence: 0.46254796

 $00:50:46.990 \longrightarrow 00:50:49.167$ this is the only biomarker there is,

NOTE Confidence: 0.46254796

 $00:50:49.170 \longrightarrow 00:50:52.124$ is a kind of scoring genomic scarring.

NOTE Confidence: 0.46254796

 $00:50:52.130 \longrightarrow 00:50:54.125$ But the challenge I would say is,

NOTE Confidence: 0.46254796

00:50:54.130 --> 00:50:55.649 and I think Jeff will appreciate this,

NOTE Confidence: 0.46254796

 $00:50:55.650 \longrightarrow 00:50:58.683$ is that the cell may be HR defective now,

NOTE Confidence: 0.46254796

00:50:58.690 --> 00:51:00.804 but then it may become a resistant

NOTE Confidence: 0.46254796

 $00:51:00.804 \longrightarrow 00:51:02.376$ to PARP inhibitors because it's

NOTE Confidence: 0.46254796

00:51:02.376 --> 00:51:04.490 now HR proficient and it will still

NOTE Confidence: 0.46254796

 $00{:}51{:}04.490 \dashrightarrow 00{:}51{:}06.249$ have the scarring left from the

NOTE Confidence: 0.46254796

 $00:51:06.249 \longrightarrow 00:51:07.992$ period where it was HR deficient.

NOTE Confidence: 0.46254796

00:51:07.992 --> 00:51:10.386 So that may help us to understand

NOTE Confidence: 0.46254796

 $00:51:10.386 \longrightarrow 00:51:11.660$ you know context.

NOTE Confidence: 0.46254796

 $00:51:11.660 \longrightarrow 00:51:13.179$ We don't have any reason to think

NOTE Confidence: 0.46254796

 $00{:}51{:}13.179 \dashrightarrow 00{:}51{:}14.896$ some one has a germ on or somatic

 $00:51:14.896 \longrightarrow 00:51:16.420$ mutation that they could benefit for

NOTE Confidence: 0.46254796

 $00:51:16.469 \longrightarrow 00:51:18.177$ a PARP inhibitor because we see that.

NOTE Confidence: 0.46254796

00:51:18.180 --> 00:51:20.504 But I'm not sure we're looking for

NOTE Confidence: 0.46254796

 $00:51:20.504 \longrightarrow 00:51:22.522$ that signature when there's no reason

NOTE Confidence: 0.46254796

 $00:51:22.522 \longrightarrow 00:51:24.574$ to be from the genomics already.

NOTE Confidence: 0.46254796

 $00:51:24.580 \longrightarrow 00:51:25.658$ So I don't think we're doing that.

NOTE Confidence: 0.46254796

 $00:51:25.660 \longrightarrow 00:51:27.298$ So we're not identifying those patients.

NOTE Confidence: 0.46254796

 $00:51:27.300 \longrightarrow 00:51:29.220$ So that's an access issue.

NOTE Confidence: 0.46254796

 $00:51:29.220 \longrightarrow 00:51:31.194$ We absolutely are using that when

NOTE Confidence: 0.46254796

 $00:51:31.194 \longrightarrow 00:51:33.140$ there's a reason to think that

NOTE Confidence: 0.46254796

 $00{:}51{:}33.140 \dashrightarrow 00{:}51{:}34.820$ there is A and HR defect,

NOTE Confidence: 0.46254796

 $00:51:34.820 \longrightarrow 00:51:36.230$ but it can't tell us.

NOTE Confidence: 0.46254796

 $00:51:36.230 \longrightarrow 00:51:37.430$ It only tells us the history,

NOTE Confidence: 0.46254796

00:51:37.430 --> 00:51:38.650 it doesn't tell us presently

NOTE Confidence: 0.46254796

 $00:51:38.650 \longrightarrow 00:51:39.870$ what's happening in the tumor.

 $00:51:39.870 \longrightarrow 00:51:41.186$ And so I think that's the limitation.

NOTE Confidence: 0.3711792

 $00:51:43.430 \longrightarrow 00:51:44.190$ Thanks for your question.

NOTE Confidence: 0.3711792

 $00:51:47.150 \longrightarrow 00:51:48.844$ With the bridges, are those all contained

NOTE Confidence: 0.3711792

 $00:51:48.844 \longrightarrow 00:51:50.443$ in cytoplasm or do those potentially

NOTE Confidence: 0.3711792

 $00:51:50.443 \longrightarrow 00:51:52.099$ contend kind of extra targets for

NOTE Confidence: 0.3711792

 $00:51:52.099 \longrightarrow 00:51:53.525$ antibodies and cars or something like

NOTE Confidence: 0.3711792

 $00:51:53.525 \longrightarrow 00:51:55.716$ that that would be unique to I think

NOTE Confidence: 0.3711792

 $00:51:55.716 \longrightarrow 00:51:57.888$ it's a great question whether you

NOTE Confidence: 0.3711792

 $00{:}51{:}57.888 \dashrightarrow 00{:}52{:}00.478$ ever I I think that there's I don't

NOTE Confidence: 0.3711792

00:52:00.478 --> 00:52:02.326 think we ever see that the plasma

NOTE Confidence: 0.3711792

 $00{:}52{:}02.326 \dashrightarrow 00{:}52{:}03.870$ membrane right actually ruptures

NOTE Confidence: 0.8885353

 $00:52:06.080 \longrightarrow 00:52:10.120$ although you know escorts also repair holes,

NOTE Confidence: 0.8885353

 $00:52:10.120 \longrightarrow 00:52:12.040$ temporary holes in the plasma membrane.

NOTE Confidence: 0.8885353

00:52:12.040 --> 00:52:14.144 So I won't say that we've actually tested

NOTE Confidence: 0.8885353

00:52:14.144 --> 00:52:16.235 that and that would be really interesting

NOTE Confidence: 0.8885353

 $00:52:16.235 \longrightarrow 00:52:18.196$ to know whether that's the case.

 $00:52:18.196 \longrightarrow 00:52:20.642$ I mean it's interesting that these same

NOTE Confidence: 0.8885353

 $00:52:20.642 \longrightarrow 00:52:23.177$ factors actually man one in particular were

NOTE Confidence: 0.8885353

 $00:52:23.177 \longrightarrow 00:52:25.679$ all identified as being auto antibody.

NOTE Confidence: 0.8885353

 $00:52:25.680 \longrightarrow 00:52:28.095$ They are all tied to auto antibody

NOTE Confidence: 0.8885353

 $00{:}52{:}28.095 \dashrightarrow 00{:}52{:}29.903$ to autoimmune diseases as common

NOTE Confidence: 0.8885353

 $00{:}52{:}29.903 \dashrightarrow 00{:}52{:}32.033$ targets of many nuclear proteins are.

NOTE Confidence: 0.8885353

00:52:32.040 --> 00:52:34.070 But I do think that that's interesting

NOTE Confidence: 0.8885353

 $00:52:34.070 \longrightarrow 00:52:37.083$ and there's some evidence that that

NOTE Confidence: 0.8885353

 $00:52:37.083 \dashrightarrow 00:52:38.781$ the Lam 2 protein also probably

NOTE Confidence: 0.8885353

 $00:52:38.781 \longrightarrow 00:52:40.639$ in the absence of functional M2,

NOTE Confidence: 0.8885353

 $00:52:40.640 \longrightarrow 00:52:43.920$ you do have kind of a prevalence of

NOTE Confidence: 0.8885353

 $00:52:43.920 \longrightarrow 00:52:46.182$ autoimmunity which would be consistent

NOTE Confidence: 0.8885353

 $00:52:46.182 \longrightarrow 00:52:48.271$ with not being able to do this normal

NOTE Confidence: 0.8885353

 $00:52:48.271 \longrightarrow 00:52:50.080$ cycle of Nuvo Con number reformation

NOTE Confidence: 0.8885353

00:52:50.080 --> 00:52:51.830 does get surveilled through this

 $00:52:51.830 \longrightarrow 00:52:53.758$ mechanism and and can be deleterious.

NOTE Confidence: 0.8885353

 $00:52:53.760 \longrightarrow 00:52:55.356$ So I think it's but yeah,

NOTE Confidence: 0.8885353

 $00:52:55.360 \longrightarrow 00:52:57.208$ we we don't really what we see is

NOTE Confidence: 0.8885353

 $00:52:57.208 \longrightarrow 00:52:58.946$ that you know likely eventually most

NOTE Confidence: 0.8885353

 $00:52:58.946 \longrightarrow 00:53:01.312$ of those cells will give up and I

NOTE Confidence: 0.8885353

00:53:01.312 --> 00:53:03.209 think it's just a just a highlight.

NOTE Confidence: 0.8885353

 $00:53:03.210 \longrightarrow 00:53:05.847$ This is why one has to be careful in

NOTE Confidence: 0.8885353

 $00:53:05.847 \longrightarrow 00:53:08.101$ assessing in this area particularly facts,

NOTE Confidence: 0.8885353

 $00:53:08.101 \longrightarrow 00:53:09.847$ profiles looking at cells that look

NOTE Confidence: 0.8885353

00:53:09.847 --> 00:53:11.543 like they're G2M cells because you

NOTE Confidence: 0.8885353

 $00{:}53{:}11.543 \dashrightarrow 00{:}53{:}13.335$ get these cells that are G2M cells

NOTE Confidence: 0.8885353

 $00:53:13.394 \longrightarrow 00:53:15.361$ but they're actually in G1 and that's

NOTE Confidence: 0.8885353

 $00:53:15.361 \longrightarrow 00:53:16.994$ because they failed in cytokinesis.

NOTE Confidence: 0.8885353

 $00{:}53{:}16.994 \dashrightarrow 00{:}53{:}19.738$ So now they're 4 N but they're

NOTE Confidence: 0.8885353

 $00:53:19.738 \longrightarrow 00:53:21.490$ actually no longer mitotic.

NOTE Confidence: 0.8885353

 $00:53:21.490 \longrightarrow 00:53:23.002$ And so that's one of the

 $00:53:23.002 \longrightarrow 00:53:24.370$ things that we see here.

NOTE Confidence: 0.8885353

 $00{:}53{:}24.370 \dashrightarrow 00{:}53{:}25.768$ So it'll show up in experiments

NOTE Confidence: 0.8047927

00:53:33.110 --> 00:53:35.000 all right.