WEBVTT

- 1 00:00:00.000 --> 00:00:00.833 <v Rong>Everyone, thank you,</v>
- $2\ 00:00:00.833 \longrightarrow 00:00:03.390$ from the Cancer Center leadership for giving me
- $3\ 00:00:03.390 --> 00:00:07.120$ this opportunity to share my latest work.
- 4 00:00:07.120 --> 00:00:11.530 I have been working my entire research career,
- $5\ 00:00:11.530 \longrightarrow 00:00:14.900$ for almost 15 years, on cancer.
- $6~00:00:14.900 \longrightarrow 00:00:19.210$ But the presentation I'm giving today,
- $7\ 00:00:19.210 \longrightarrow 00:00:20.550$ it's not much about cancer
- 8 00:00:20.550 \rightarrow 00:00:22.930 and not much about the single cell analysis
- 9 00:00:22.930 \rightarrow 00:00:25.740 I have been working on for almost 10 years.
- 10 00:00:25.740 --> 00:00:27.370 This is something we haven't published,
- $11\ 00:00:27.370 \longrightarrow 00:00:28.900$ it just came out in my lab.
- $12\ 00:00:28.900 --> 00:00:32.430$ I'm happy to hear feedback from you guys.
- 13 00:00:32.430 --> 00:00:37.200 So, I think that largely the anomaly
- $14\ 00:00:37.200 \longrightarrow 00:00:39.559$ in the omics area recently is,
- $15\ 00:00:39.559 --> 00:00:43.120$ people can do single cell omics
- $16\ 00{:}00{:}43.120 \dashrightarrow 00{:}00{:}47.550$ and multi-omics to understand tumor heterogenetics,
- $17\ 00:00:49.200 \longrightarrow 00:00:53.000$ but you really don't have the spatial information anymore.
- $18\ 00{:}00{:}53.000$ --> $00{:}00{:}56.900$ So the spatial omics kind of came out, or emerged,
- $19\ 00:00:56.900 \longrightarrow 00:00:58.890$ to address this challenge.
- 20 00:00:58.890 --> 00:01:01.356 Over the past couple years, I think largely,
- 21 00:01:01.356 --> 00:01:03.740 you'll see many different technologies,
- $22\ 00:01:03.740 \longrightarrow 00:01:07.140$ but largely, they are all based on just FISH.
- $23\ 00:01:07.140 --> 00:01:10.380$ The more specific and more precise FISH,
- $24\ 00:01:10.380 \longrightarrow 00:01:12.273$ being a single molecule level FISH.
- 25 00:01:13.291 --> 00:01:18.100 So the shortcomings here, using FISH is,
- 26 00:01:18.100 --> 00:01:21.550 it's difficult, even my lab work and technology,
- 27 00:01:21.550 --> 00:01:22.860 I just cannot do it.

- $28\ 00:01:22.860 \longrightarrow 00:01:26.890$ This requires very advanced imaging technology,
- $29\ 00:01:26.890 \longrightarrow 00:01:28.710$ single-molecule fluorescence.
- 30 00:01:28.710 --> 00:01:31.530 You need to image over some time
- $31\ 00:01:31.530 \longrightarrow 00:01:34.270$ for a very sort of high volume
- $32\ 00:01:34.270 \longrightarrow 00:01:38.220$ and genome-scale data you want to collect from one sample,
- $33\ 00{:}01{:}38.220 \dashrightarrow 00{:}01{:}41.860$ you probably need to image over days, repeatedly,
- $34\ 00:01:41.860 --> 00:01:46.160$ to get this sort of large number of genes
- $35\ 00:01:46.160 --> 00:01:49.290$ analyzed on the same sample.
- $36\ 00:01:49.290 \longrightarrow 00:01:53.052$ And also, that's not a sort of unbiased genomescale,
- $37\ 00:01:53.052 --> 00:01:57.950$ you really need to know the sequence you want to analyze.
- $38\ 00:01:57.950 --> 00:02:01.720$ And also, so far, I think no one else talks about
- 39 00:02:01.720 --> 00:02:04.700 spatial omics and another terminology
- $40\ 00:02:04.700 --> 00:02:09.600$ people use in this field is this spatial transcriptomics.
- 41 00:02:09.600 --> 00:02:11.830 It's not so obvious,
- $42\ 00:02:11.830 --> 00:02:16.703$ how you can extend to other omics measurements using FISH.
- $43~00:02:18.180 \dashrightarrow 00:02:21.300$ So I think the latest breakthrough
- $44\ 00:02:21.300 --> 00:02:24.370$ came out actually this year,
- 45 00:02:24.370 --> 00:02:26.340 the two papers published, I think one
- 46 00:02:26.340 --> 00:02:29.430 just came out last week in Nature Methods,
- $47\ 00:02:29.430 \longrightarrow 00:02:33.809$ Another paper a couple of months ago in Science,
- $48\ 00:02:33.809$ --> 00:02:38.809 to really use the power of Next Generation Sequencing
- 49 00:02:39.060 --> 00:02:40.770 for spatial omics mapping,
- 50 00:02:40.770 --> 00:02:42.780 or spatial transcriptome mapping.
- $51\ 00:02:42.780 --> 00:02:47.570$ So an approach they took actually is quite similar.

- $52\ 00:02:47.570 \longrightarrow 00:02:50.930$ So they create sort of a barcoded surface
- $53\ 00:02:50.930 \longrightarrow 00:02:54.150$ using the packed beads.
- $54\ 00:02:54.150 \longrightarrow 00:02:56.150$ So whoever working in this space
- $55\ 00:02:56.150 \longrightarrow 00:02:58.970$ probably know no matter text genomics on
- $56~00:03:01.460 \dashrightarrow 00:03:05.760$ the DropSeq technology, you need a DNA barcoder beads.
- 57 00:03:05.760 --> 00:03:08.740 So each bead has this thing, the DNA barcode,
- $58\ 00:03:08.740 --> 00:03:13.050$ to really tell you which messenger is from which cell,
- $59\ 00:03:13.050 --> 00:03:15.730$ or whether or not they are from the same cell.
- 60 00:03:15.730 --> 00:03:17.040 They're basically packing the beads
- $61\ 00:03:17.040 \longrightarrow 00:03:20.450$ on a monolayer on a glass slide.
- 62 00:03:20.450 --> 00:03:21.457 And they need to decode the beads,
- $63~00{:}03{:}21.457 \dashrightarrow 00{:}03{:}25.810$ they need to know which bead has what sequence.
- $64\ 00:03:25.810 \longrightarrow 00:03:27.650$ So this decoding process was done
- 65 00:03:27.650 --> 00:03:30.300 by either SOLiD sequencing, or again,
- $66\ 00{:}03{:}30.300 \dashrightarrow 00{:}03{:}34.039$ very much like FISH, you do repeated cell hybridization
- $67\ 00:03:34.039 \longrightarrow 00:03:36.060$ and imaging to decode the beads.
- $68\ 00:03:36.060 --> 00:03:39.400$ That is a very tedious process as well.
- 69 00:03:39.400 --> 00:03:41.960 But afterwards, you get
- $70\ 00:03:41.960 \longrightarrow 00:03:45.700$ sort of a freshly micro-sectioned tissue sample
- $71\ 00:03:45.700 --> 00:03:49.320$ and you place it on top and you lyse the tissue section
- $72\ 00{:}03{:}49.320$ --> $00{:}03{:}54.320$ and hopefully, the messenger is released from the cells
- $73\ 00:03:54.371 \longrightarrow 00:03:58.010$ in the proximity of the specific bead.
- 74 00:03:58.010 --> 00:04:00.250 It should be captured only by that bead,
- $75\ 00:04:00.250 --> 00:04:03.280$ but I don't think the lateral sort of diffusion
- $76\ 00:04:03.280 \longrightarrow 00:04:05.600$ can be really avoided.
- $77\ 00{:}04{:}05.600 \dashrightarrow 00{:}04{:}09.410$ But at least they saw a pretty good preferential capture

- $78\ 00:04:09.410 \longrightarrow 00:04:12.343$ of the messengers from the adjacent cells.
- 79~00:04:13.870 --> 00:04:17.033 I think this technology published or released in Science.
- 80 00:04:17.033 --> 00:04:19.900 demonstrate you can do 10 micron resolution
- 81 00:04:21.210 --> 00:04:26.210 spatial mapping of mRNA transcriptome by sequencing.
- $82\ 00:04:26.220 \longrightarrow 00:04:29.000$ And this paper came out last week
- 83~00:04:29.000 --> 00:04:31.492 demonstrating you can actually use even smaller beads,
- $84\ 00:04:31.492 --> 00:04:35.805$ like two micron beads, to further sort of reduce
- $85\ 00:04:35.805 \longrightarrow 00:04:38.265$ the pixel size and increase the resolution.
- 86 00:04:38.265 --> 00:04:41.380 But two microns really (mumbles),
- $87\ 00:04:41.380$ --> 00:04:44.387 the data analysis becomes even more complicated.
- $88\ 00:04:44.387 \longrightarrow 00:04:49.387$ And it turns out there have to be multiple beads
- 89 $00:04:50.240 \longrightarrow 00:04:54.120$ to get a quality image.
- 90 00:04:54.120 --> 00:04:56.610 So interesting, when we visited their data,
- $91\ 00:04:56.610 --> 00:05:00.654$ we found although they can see sort of an atomic or
- $92\ 00:05:00.654$ --> 00:05:04.500 histological structure of different cells in a tissue,
- $93\ 00:05:04.500 \dashrightarrow 00:05:07.781$ but it is almost impossible to visualize individual genes
- $94~00:05:07.781 \longrightarrow 00:05:10.330$ because the number of genes they can detect per pixel
- 95 00:05:10.330 --> 00:05:15.330 is extremely sparse, about like 100, 200 genes per spot.
- $96\ 00:05:15.580 \longrightarrow 00:05:18.830$ If you tried to image on individual genes
- 97 00:05:18.830 --> 00:05:21.810 across on pixel's entire tissue,
- 98 00:05:21.810 --> 00:05:26.100 the data totally is sort of not that meaningful at all.
- 99 00:05:26.100 --> 00:05:30.270 So what we can do is fundamentally different,
- $100\ 00:05:30.270 \longrightarrow 00:05:33.583$ I'm not about to say too much in the technical details,

- $101\ 00:05:33.583 \longrightarrow 00:05:35.680$ but this is totally different.
- $102\ 00:05:35.680 \longrightarrow 00:05:38.100$ We don't use beads and we just need
- $103\ 00:05:38.100 \longrightarrow 00:05:40.830$ a bunch of reagents with this device.
- 104 00:05:40.830 --> 00:05:44.010 And although we have been working
- $105\ 00:05:44.010 \longrightarrow 00:05:45.350$ on microfluids for years,
- 106 00:05:45.350 --> 00:05:50.090 but I don't like complicate microfluids like you guys.
- 107 00:05:50.090 --> 00:05:53.490 So this device, basically, you just place PDMS
- $108\ 00:05:53.490 \longrightarrow 00:05:55.770$ on top of your tissue and your clamp it, that's it.
- 109 00:05:55.770 --> 00:05:58.360 That's everything you need to do
- $110\ 00:05:58.360 \longrightarrow 00:05:59.880$ to deal with the microfluids.
- $111\ 00{:}05{:}59.880 \dashrightarrow 00{:}06{:}03.940$ Afterwards, you just pipette your reagent to the host.
- $112\ 00{:}06{:}03.940 \dashrightarrow 00{:}06{:}07.460$ So in the data, the validation data we have shown
- 113 00:06:07.460 --> 00:06:11.370 is we use sort of pan-messenger RNA FISH
- $114\ 00:06:11.370 \longrightarrow 00:06:14.430$ to visualize the individual tissue pixels
- $115\ 00:06:14.430 \longrightarrow 00:06:17.750$ we eventually are able to sequence
- $116\ 00:06:17.750 \longrightarrow 00:06:21.130$ with the spatial resolution.
- $117\ 00:06:21.130 --> 00:06:24.250$ So we found we can get a very nice 10 micron pixel,
- $118\ 00:06:24.250 \longrightarrow 00:06:26.340$ as shown here if you zoom in.
- 119 00:06:26.340 --> 00:06:28.616 And then also interestingly,
- $120\ 00:06:28.616 --> 00:06:30.820$ we saw sort of in the tissues
- 121 00:06:30.820 --> 00:06:33.843 after we process with our barcoding strategy,
- $122\ 00{:}06{:}33.843 \dashrightarrow 00{:}06{:}38.432$ our barcoding approach, show some topological features.
- $123\ 00:06:38.432 --> 00:06:40.930$ Even under optical microscope
- $124\ 00:06:40.930 --> 00:06:43.530$ you can see where your individual pixels
- $125\ 00:06:43.530 \longrightarrow 00:06:45.280$ are located on the tissue.
- $126\ 00:06:45.280 --> 00:06:49.770$ And worth noting, so this is sort of exactly the same tissue

- 127 00:06:49.770 --> 00:06:52.960 we're gonna take for sequencing,
- $128\ 00:06:52.960 \longrightarrow 00:06:56.150$ rather than the previous methods
- $129\ 00{:}06{:}56.150 \dashrightarrow 00{:}06{:}59.930$ that always have to compare to an adjacent tissue.
- $130\ 00:06:59.930 \longrightarrow 00:07:02.030$ They are not able to get any good image
- $131\ 00:07:02.030 \longrightarrow 00:07:03.700$ from the same tissue at all.
- $132\ 00:07:03.700 \longrightarrow 00:07:07.500$ Also, the tissue sample we analyzed,
- $133\ 00:07:07.500 \dashrightarrow 00:07:11.920$ they are just a formal dehyde-fixed tissue sample
- $134\ 00:07:11.920 \longrightarrow 00:07:12.950$ on a glass slide.
- $135\ 00{:}07{:}12.950 {\:{\mbox{--}}\!>\:} 00{:}07{:}16.180$ So if you have a freezer of those samples banked
- $136\ 00:07:16.180 --> 00:07:21.020$ in your freezer, we can look at those samples as well.
- $137\ 00:07:21.020$ --> 00:07:23.895 We don't have to use sort of frozen tissue block
- $138\ 00:07:23.895 \longrightarrow 00:07:28.895$ and a fresh section to put on our slide.
- $139\ 00:07:31.450 --> 00:07:33.300$ So we did some quantitative analysis
- $140\ 00:07:33.300 \longrightarrow 00:07:37.170$ of how many cells we can get per pixel,
- 141 00:07:37.170 --> 00:07:39.330 using this DAPI staining.
- $142\ 00{:}07{:}39.330 \dashrightarrow 00{:}07{:}44.020$ And also, we were also concerned whether or not
- 143 00:07:44.020 --> 00:07:46.800 each pixel is distinct molecular barcode,
- $144\,00{:}07{:}46.800 \, --> 00{:}07{:}50.700$ we can put on or some sort of diffusion between the pixel
- $145\ 00:07:51.810 \longrightarrow 00:07:53.613$ that might cause cross contamination.
- $146\ 00:07:53.613 --> 00:07:56.150$ We quantified a diffusion distance,
- $147\ 00:07:56.150 \longrightarrow 00:07:58.710$ we found it using the fluorophores basically.
- $148\ 00:07:58.710 \longrightarrow 00:08:00.159$ So we found the diffusion distance
- 149 00:08:00.159 --> 00:08:03.880 is actually just one micro meter,
- $150\ 00:08:03.880 \longrightarrow 00:08:07.410$ which suggests we can potentially
- $151\ 00{:}08{:}07.410 \dashrightarrow 00{:}08{:}11.990$ further reduce the pixel size and increase the resolution

- 152 00:08:11.990 --> 00:08:15.523 to about like two micron using our technology.
- $153\ 00:08:16.910 \longrightarrow 00:08:21.110$ So the feature size matched
- $154\ 00:08:21.110 \longrightarrow 00:08:24.100$ the sort of the microfluid design very well.
- $155\ 00:08:24.100 \longrightarrow 00:08:26.510$ And the number of cells we can get
- $156\ 00{:}08{:}26.510 \dashrightarrow 00{:}08{:}31.510$ in the 10 micron pixel size device is about 1.7 cells,
- $157\ 00:08:32.030 \longrightarrow 00:08:33.950$ we're really getting close
- $158\ 00:08:33.950 \longrightarrow 00:08:37.383$ to single cell level spatial omics.
- 159 00:08:38.440 --> 00:08:41.690 As I kinda alluded a little bit earlier,
- $160\ 00:08:41.690 \longrightarrow 00:08:44.370$ so the qualitative data, very important.
- $161\ 00:08:44.370 \longrightarrow 00:08:48.480$ So we compared our data to the Slide-seq data
- $162\ 00:08:48.480 --> 00:08:49.960$ published earlier this year.
- $163\ 00:08:49.960 \longrightarrow 00:08:52.407$ So for the number of genes they can detect per pixel,
- $164\ 00:08:52.407 \longrightarrow 00:08:54.460$ about the size, 10 micron
- $165\ 00:08:54.460 \longrightarrow 00:08:56.592$ and then the number of genes we detected
- $166\ 00:08:56.592 --> 00:08:57.580$ by using our technology.
- 167 00:08:57.580 --> 00:09:00.910 So really all that (mumbles) increase,
- $168\ 00:09:00.910 \longrightarrow 00:09:02.590$ in terms of how many genes,
- $169\ 00:09:02.590 \longrightarrow 00:09:04.810$ how many transcripts we can detect.
- 170 00:09:04.810 --> 00:09:07.190 About two years, three years ago,
- 171 00:09:07.190 --> 00:09:11.230 similar technology, sort of barcoded surface,
- 172 00:09:11.230 --> 00:09:12.900 basically capture of messenger RNAs
- 173 00:09:12.900 --> 00:09:14.870 for spatial transcriptome mapping
- $174\ 00:09:14.870 \longrightarrow 00:09:18.540$ was published in Science 2016.
- $175\ 00:09:18.540 \longrightarrow 00:09:21.040$ But that was very low spatial resolution,
- 176 00:09:21.040 --> 00:09:23.558 about 150 micron, but in that data,
- $177\ 00:09:23.558 --> 00:09:26.200$ when you look at how many genes they can detect,
- $178\ 00:09:26.200 \longrightarrow 00:09:28.203$ that's about the same as what we can do.
- 179 00:09:29.220 --> 00:09:32.150 But the resolution is much, much lower.
- 180 00:09:32.150 --> 00:09:35.303 Or if you calculated sort of an area per pixel,

- $181\ 00:09:35.303 \longrightarrow 00:09:38.700$ it's 100 times larger than what we have.
- $182\ 00:09:38.700 \dashrightarrow 00:09:43.114$ So I was very excited about this sort of data quality,
- 183 00:09:43.114 --> 00:09:46.420 which really enabled on the following slides,
- $184\ 00:09:46.420 --> 00:09:48.490$ we can really visualize individual genes
- $185\ 00{:}09{:}48.490 \dashrightarrow 00{:}09{:}52.354$ rather than using extremely sophisticated informatics
- $186\ 00:09:52.354 \longrightarrow 00:09:57.100$ to identify genes just to visualize
- $187\ 00:09:57.100 \longrightarrow 00:09:58.620$ the different cells types.
- $188\ 00:09:58.620 \longrightarrow 00:10:02.430$ We can actually interrogate every single genes
- $189\ 00:10:02.430 \longrightarrow 00:10:04.603$ across the entire tissue map.
- $190\ 00:10:06.430 \longrightarrow 00:10:09.843$ So when we first start with this,
- 191 00:10:11.270 --> 00:10:12.670 I'm extremely excited about
- $192\ 00:10:12.670 --> 00:10:14.023$ tumor micro environment feature.
- $193\ 00:10:14.023 --> 00:10:16.017$ But we decide to pick something
- 194 00:10:16.017 --> 00:10:17.560 that's well characterized,
- $195\ 00:10:17.560 \longrightarrow 00:10:19.610$ people know what cell types are there.
- 196 00:10:19.610 --> 00:10:21.620 So we used mouse embryo
- $197\ 00:10:21.620 --> 00:10:26.620$ in the earlier stage of organogenesis, it's about 10 days.
- $198~00{:}10{:}26.710 \dashrightarrow 00{:}10{:}30.380$ We were able to map out, actually, I wanna talk about
- 199 00:10:30.380 --> 00:10:33.280 a messenger RNA, actually, we can do also
- $200\ 00{:}10{:}33.280 {\longrightarrow} 00{:}10{:}38.280$ about 22 types of protein simultaneously mapped out
- 201 00:10:38.350 --> 00:10:40.590 using the same barcoding strategy,
- 202 00:10:40.590 --> 00:10:42.420 microfluid barcoding strategy.
- 203 00:10:42.420 --> 00:10:45.170 Showing here, is sort of pan-messenger RNA,
- 204 00:10:45.170 --> 00:10:46.430 but done by sequencing.
- $205\ 00:10:46.430 \longrightarrow 00:10:48.460$ So you can see actually the intensity
- $206~00:10:48.460 \dashrightarrow 00:10:51.970$ of the total signal of the messenger
- $207\ 00:10:51.970 \dashrightarrow 00:10:56.970$ does reflect (mumbles) in the tissue on the embryo slides.

- $208\ 00{:}10{:}58.250 \dashrightarrow 00{:}11{:}02.490$ And here, this average signal of over 22 proteins
- $209\ 00:11:02.490 \longrightarrow 00:11:06.380$ we're able to look at as a panel.
- 210 00:11:06.380 --> 00:11:08.570 That doesn't really correlate that very well,
- 211 00:11:08.570 --> 00:11:10.480 but I think that makes sense,
- $212\ 00:11:10.480 \longrightarrow 00:11:13.960$ because you're not looking at it globally on all proteins,
- 213 00:11:13.960 --> 00:11:16.330 but the sub panel, it really depends
- $214\ 00:11:16.330 --> 00:11:18.737$ on what proteins you put in your panel.
- $215\ 00:11:18.737 --> 00:11:21.040$ Then we did a cluster analysis.
- 216 00:11:21.040 --> 00:11:24.650 When we look at single cells, we used tSNE,
- 217 00:11:24.650 --> 00:11:26.860 but here, it does make sense you have to use tSNE
- $218\ 00{:}11{:}26.860 \dashrightarrow 00{:}11{:}31.170$ because you know exactly where the spatial location
- 219 00:11:31.170 --> 00:11:33.381 of every single pixel is.
- 220 00:11:33.381 --> 00:11:36.650 But the computational algorithm for clustering
- 221 00:11:36.650 --> 00:11:39.360 is identical, so, but after clustering,
- $222\ 00:11:39.360 \longrightarrow 00:11:42.420$ we just put it back on the tissue histological.
- 223 00:11:42.420 --> 00:11:45.820 The spatial map, we see sort of
- $224\ 00:11:47.860 \longrightarrow 00:11:49.850$ about eight clusters over here.
- $225\ 00{:}11{:}49.850 \longrightarrow 00{:}11{:}54.850$ And they pretty much match the anatomic annotation
- $226\ 00:11:54.870 \longrightarrow 00:11:56.683$ we got from the eMouseAtlas.
- $227\ 00{:}11{:}58.080 \dashrightarrow 00{:}12{:}00.464$ And more interestingly, I think in the eMouse-Atlas
- $228\ 00:12:00.464 \longrightarrow 00:12:03.215$ you're now able to kind of resolve
- 229 00:12:03.215 --> 00:12:06.129 a wide stripe the tissue here,
- 230 00:12:06.129 --> 00:12:10.236 but we saw a very distinct stripe of sort of cell type.
- $231\ 00:12:10.236 \longrightarrow 00:12:14.800$ We're still unclear what those cells are,
- 232 00:12:14.800 --> 00:12:18.311 but probably associated with the mouse

- $233\ 00:12:18.311 \longrightarrow 00:12:21.853$ sort of major agrae around the area.
- $234\ 00{:}12{:}23.700 \dashrightarrow 00{:}12{:}26.800$ As I mentioned, we are able to visualize individual genes
- 235 00:12:26.800 --> 00:12:30.848 or individual proteins at a very high quality
- $236\ 00:12:30.848 \longrightarrow 00:12:34.519$ across the entire tissue section.
- $237\ 00:12:34.519 --> 00:12:39.440$ Showing here a couple of genes and couple of proteins.
- $238\ 00:12:39.440 --> 00:12:42.580$ And overall, I think the protein signal way higher,
- 239 00:12:42.580 --> 00:12:45.830 it's not a big surprise, this is because you measure
- 240 00:12:45.830 --> 00:12:48.876 only like 22 rather than genome scale.
- 241 00:12:48.876 --> 00:12:51.640 But when you compare, you see consistence,
- 242 00:12:51.640 --> 00:12:53.930 you see concordance and also discordance
- $243\ 00:12:53.930 \longrightarrow 00:12:55.900$ between the gene and proteins
- $244\ 00:12:55.900 \longrightarrow 00:12:57.860$ people have seen over and over.
- $245\ 00{:}12{:}57.860 \dashrightarrow 00{:}13{:}02.043$ And very interestingly, when we look at EpCAM,
- 246 00:13:03.370 --> 00:13:05.950 it's a very nice concordance
- 247 00:13:05.950 --> 00:13:07.877 between the protein and messenger RNA
- 248 00:13:07.877 --> 00:13:10.620 in the EpCAM expression right here.
- $249\ 00{:}13{:}10.620 \dashrightarrow 00{:}13{:}15.620$ And this one, I think, this is a microvascular tissue,
- 250 00:13:16.220 --> 00:13:18.016 microvascular tissue already developed
- $251\ 00{:}13{:}18.016 \dashrightarrow 00{:}13{:}22.100$ in mouse embryo at this stage all over the whole body,
- $252\ 00:13:22.100 \longrightarrow 00:13:24.618$ we can see they are expressed everywhere,
- $253\ 00{:}13{:}24.618 --> 00{:}13{:}28.070$ but we don't see a distinct structure at this resolution,
- $254\ 00{:}13{:}28.070 \dashrightarrow 00{:}13{:}31.810$ because this resolution is about 50 micron, not 10 micron.
- $255~00{:}13{:}31.810 \dashrightarrow 00{:}13{:}35.160$ I will get down to the high resolution data later.
- $256\ 00:13:35.160 \longrightarrow 00:13:37.110$ And then we did a sort of validation

- $257\ 00:13:37.110 \longrightarrow 00:13:40.820$ to compare our data to immunofluorescence staining
- $258\ 00:13:40.820 \longrightarrow 00:13:43.070$ for several selected genes.
- $259\ 00{:}13{:}43.070 --> 00{:}13{:}47.360$ And this vasculature, again, you see extensive everywhere.
- $260~00:13:47.360 \longrightarrow 00:13:50.120$ You see EpCAM exactly the same pattern
- 261 00:13:50.120 --> 00:13:52.120 as we saw using sequencing.
- $262\ 00:13:52.120 \longrightarrow 00:13:55.362$ So just a couple of those locations
- $263\ 00:13:55.362 --> 00:13:59.530$ showing the expression of the EpCAM.
- $264\ 00:13:59.530 \longrightarrow 00:14:01.040$ And another validation is
- $265\ 00:14:01.040 \longrightarrow 00:14:02.790$ we've done the sequencing data
- 266 00:14:02.790 --> 00:14:04.700 and the paper published earlier this year
- $267\ 00{:}14{:}04.700 \dashrightarrow 00{:}14{:}07.030$ by Jason Du, from the University of Washington,
- $268\ 00:14:07.030 \longrightarrow 00:14:10.370$ they used single cell sequencing to map out
- 269 00:14:10.370 --> 00:14:13.320 several mouse embryos over different stages.
- 270 00:14:13.320 --> 00:14:16.830 And then you can basically do a tissue,
- 271 00:14:16.830 --> 00:14:20.080 a sort of sample tSNE, or sample UMap,
- $272\ 00:14:20.080 --> 00:14:23.040$ this is not a single cell UMAP, but a sample UMap.
- $273\ 00:14:23.040 --> 00:14:25.100$ So we found a four sample sequence
- $274\ 00:14:25.100 \longrightarrow 00:14:28.320$ actually mapped very well to this
- $275\ 00:14:28.320 \longrightarrow 00:14:31.530$ sort of differential or developmental trajectory.
- $276\ 00{:}14{:}31.530 \dashrightarrow 00{:}14{:}36.437$ So in here, from their data, this is sort of the E9.5
- $277~00{:}14{:}37.680 \dashrightarrow 00{:}14{:}42.000$ and that this is E10.5 and we are right in the middle.
- $278\ 00:14:42.000 \longrightarrow 00:14:45.500$ Those are kind of a little bit later stages
- $279\ 00:14:45.500 \longrightarrow 00:14:50.500$ of the developmental mouse embryos.
- $280\ 00:14:52.050 \longrightarrow 00:14:54.670$ And then we used a little bit higher resolution
- $281\ 00:14:54.670 \longrightarrow 00:14:58.443$ to look at the embryonic brain.
- $282\ 00:14:58.443 --> 00:15:01.180$ This is about the entire brain

 $283\ 00:15:01.180 --> 00:15:04.150$ and a little bit other tissues in the head and the neck.

 $284\ 00:15:04.150 \longrightarrow 00:15:08.550$ And also, this one, we didn't know what that is,

285 00:15:08.550 --> 00:15:11.070 but after data analysis, we found that actually

 $286\ 00:15:11.070 \longrightarrow 00:15:13.260$ it's a piece of the heart.

 $287\ 00:15:13.260 --> 00:15:15.776$ And what we see from the protein

288 00:15:15.776 --> 00:15:17.560 and from the messenger RNA is,

 $289\ 00:15:17.560 --> 00:15:20.090$ again, the messenger RNA atlas

 $290\ 00:15:20.090 \dashrightarrow 00:15:22.620$ does reflect in the tissue histology very well.

 $291\ 00:15:22.620 \longrightarrow 00:15:24.620$ And the protein now, is much higher resolution

 $292\ 00{:}15{:}24.620 \dashrightarrow 00{:}15{:}28.410$ of 25 micron, you do see some sort of correlation

 $293\ 00:15:28.410 \longrightarrow 00:15:32.960$ between tissue histology and protein expression atlas,

 $294~00{:}15{:}32.960 \dashrightarrow 00{:}15{:}37.960$ but not as so distinct compared to the messenger RNA.

 $295\ 00:15:39.088 \longrightarrow 00:15:40.640$ So we were able to visualize

296 00:15:40.640 --> 00:15:42.160 individual proteins essentially,

 $297\ 00:15:42.160 --> 00:15:45.970$ here are four of them, I think are very interesting.

298 00:15:45.970 --> 00:15:49.260 Again, EPCAM, this is a very high resolution,

299 00:15:49.260 --> 00:15:53.510 you can see very tight clusters of EpCAM expression

 $300\ 00:15:53.510 \longrightarrow 00:15:55.590$ in specific tissue regions right here and here

 $301\ 00:15:55.590 \longrightarrow 00:15:58.083$ and there's two or three or four.

 $302\ 00{:}15{:}58.083 \dashrightarrow 00{:}16{:}02.201$ And the microvasculature, we can see the microvasculature

 $303\ 00:16:02.201 \longrightarrow 00:16:04.010$ by sequencing very well.

 $304\ 00:16:04.010 \longrightarrow 00:16:06.930$ And when you go to look on the tissue histology,

305 00:16:06.930 --> 00:16:09.370 or maybe I'm not pathology by training,

 $306~00:16:09.370 --> 00:16:12.798~\mathrm{I}$ just cannot identify where the microvasculature

- 307 00:16:12.798 --> 00:16:16.440 are located based on the tissue histology.
- 308~00:16:16.440 --> 00:16:18.890 And the two other proteins, very interesting as well.
- $309~00{:}16{:}18.890 \dashrightarrow 00{:}16{:}21.940$ This MAdCAM, we found it is a highly enriched
- 310 00:16:21.940 --> 00:16:25.550 in part of the forebrain, but not entire forebrain.
- 311 00:16:25.550 --> 00:16:29.350 And we see in CD63 it's widely implicated
- $312\ 00:16:29.350 \longrightarrow 00:16:31.580$ in the early stage mouse development.
- $313~00{:}16{:}31.580 \dashrightarrow 00{:}16{:}36.580$ It's kinda anti-correlated with MAdCAM in other areas,
- 314 00:16:36.840 --> 00:16:38.170 so we kind put them together,
- $315\ 00:16:38.170 \longrightarrow 00:16:43.170$ you can see their relative correlation each other.
- $316~00{:}16{:}43.768 \dashrightarrow 00{:}16{:}46.584$ So, again, this technology where we want to validate
- 317 00:16:46.584 --> 00:16:50.530 to make sure what we saw using sequencing
- 318 00:16:50.530 --> 00:16:53.670 does match immunofluorescence staining.
- $319\ 00:16:53.670 \longrightarrow 00:16:57.001$ So this is from sequencing, this is from sequencing,
- 320 00:16:57.001 --> 00:17:00.710 this is about microvasculature, this is EpCAM,
- $321\ 00{:}17{:}00.710 \dashrightarrow 00{:}17{:}03.367$ this immuno staining, you'll se almost a perfect match.
- $322\ 00{:}17{:}03.367 \dashrightarrow 00{:}17{:}08.367\ I$ was very surprised, this is really a perfect match
- $323\ 00:17:08.550 --> 00:17:11.480$ of distinct clusters right here, a little bit right here
- $324\ 00:17:11.480 --> 00:17:14.050$ from immuno staining and we can pick up.
- $325\ 00{:}17{:}14.050 \dashrightarrow 00{:}17{:}18.730$ It's only a few, so one single pixel layer thickness
- $326\ 00:17:18.730 \longrightarrow 00:17:20.530$ we can pick up very well.
- $327~00:17:20.530 \longrightarrow 00:17:22.040$ And so now here, you can see
- $328\ 00{:}17{:}22.040 \dashrightarrow 00{:}17{:}26.950$ those microvascular network using immuno staining,

- $329\ 00{:}17{:}26.950 \dashrightarrow 00{:}17{:}31.763$ which was also observed in our sequencing map at las.
- $330\ 00:17:33.070 \longrightarrow 00:17:34.300$ So I got an interested in,
- 331 00:17:34.300 --> 00:17:37.750 this particular protein called MAdCAM and asked my poster
- $332\ 00{:}17{:}37.750 --> 00{:}17{:}40.790$ to do some differential gene expression sort of.
- $333\ 00{:}17{:}40.790 \dashrightarrow 00{:}17{:}43.790$ But the MAdCAM transcripts, it's difficult to see
- 334 00:17:45.325 --> 00:17:47.690 the sort of spatially distinct expression,
- $335\ 00:17:47.690 --> 00:17:50.450$ but in the protein data, you can it see very well.
- $336\ 00:17:50.450 \longrightarrow 00:17:52.670$ Then we decided to use our sort of
- 337 00:17:52.670 --> 00:17:55.350 high quality spatial protein data
- $338\ 00:17:55.350 \longrightarrow 00:17:56.902$ to guide the differential gene expression
- $339\ 00:17:56.902 \longrightarrow 00:17:58.563$ across the entire transcriptome
- $340\ 00:17:58.563 \longrightarrow 00:18:00.510$ for different tissue reagents.
- $341~00{:}18{:}00.510 \dashrightarrow 00{:}18{:}03.400$ So in this case, we're looking at MAdCAM-positive
- $342~00:18:03.400 \longrightarrow 00:18:06.550$ and a MAdCAM-negative and mapped out the top ranked genes
- 343~00:18:06.550 --> 00:18:08.270 for MAdCAM-positive region.
- $344\ 00{:}18{:}08.270 \dashrightarrow 00{:}18{:}11.800$ This is still ongoing, since I'm still in the stages
- 345 00:18:11.800 --> 00:18:14.040 of learning developmental pathology,
- $346\ 00:18:14.040 \longrightarrow 00:18:16.910$ but what we can see some interesting features.
- 347 00:18:16.910 --> 00:18:19.143 But in the negative region, clearly,
- $348\ 00:18:19.143 \dashrightarrow 00:18:22.210$ so this is the heart, turns out, this is kind of heart,
- $349\ 00:18:22.210 \longrightarrow 00:18:25.150$ kind of microtube associated proteins.
- 350 00:18:25.150 --> 00:18:26.960 And this is interesting thing,
- $351\ 00{:}18{:}26.960 \dashrightarrow 00{:}18{:}29.800$ we don't really see this protein showed up extensively

- $352\ 00:18:29.800$ --> 00:18:34.501 in the brain, but some how look like in this local area.
- 353 00:18:34.501 --> 00:18:37.170 And I have no idea what that is,
- $354\ 00{:}18{:}37.170 \dashrightarrow 00{:}18{:}40.223$ but later we figure out that's actually the eye, here.
- $355\ 00{:}18{:}41.249 \dashrightarrow 00{:}18{:}44.050$ And then we decided to do even higher resolution,
- 356 00:18:44.050 --> 00:18:45.980 which is a 10 micron resolution mapping
- $357\ 00:18:45.980 \longrightarrow 00:18:48.587$ of a particular region of the brain.
- 358 00:18:48.587 --> 00:18:53.020 And again, we had no idea where to map now,
- $359~00{:}18{:}53.020 \dashrightarrow 00{:}18{:}55.910$ we just randomly placed our device on top
- $360\ 00:18:55.910 \longrightarrow 00:18:57.670$ and then mapped out this region.
- 361 00:18:57.670 --> 00:18:59.840 And the red color actually real data,
- $362~00:18:59.840 \longrightarrow 00:19:02.820$ this basically just pan-messenger RNA data.
- $363\ 00:19:02.820 \longrightarrow 00:19:04.930$ You can see the signal relatively uniformed
- 364 00:19:04.930 --> 00:19:07.210 and not perfect, but that's totally okay,
- 365 00:19:07.210 --> 00:19:08.990 just like when we do single cellular sequencing,
- $366\ 00:19:08.990 --> 00:19:10.377$ we always do normalizations.
- $367\ 00:19:10.377 \longrightarrow 00:19:12.529$ Then that gives you, as long as your sequencing quality,
- 36800:19:12.529 --> 00:19:17.058 sequencing data quality, number of genes you can read out
- $369\ 00{:}19{:}17.058 \dashrightarrow 00{:}19{:}19.680$ (mumbles) genes, you can always do normalization
- $370\ 00:19:19.680 \longrightarrow 00:19:22.680$ and compare across different pixels.
- $371\ 00{:}19{:}22.680 \dashrightarrow 00{:}19{:}26.988$ And as I told you, actually, we can see in the same tissue
- $372\ 00{:}19{:}26.988 \dashrightarrow 00{:}19{:}30.950$ sort of after the barcoding and before the sequencing,
- 373 00:19:30.950 --> 00:19:33.947 we can even just under optical microscope,
- $374\ 00:19:33.947 \longrightarrow 00:19:36.340$ we can see individual pixels over here.
- $375\ 00{:}19{:}36.340 --> 00{:}19{:}39.663$ And then when my poster showed me this image,
- 376 00:19:39.663 --> 00:19:42.339 it's okay, you got a key wide fiber over there

- $377\ 00:19:42.339 \longrightarrow 00:19:45.350$ very likely, because we saw this
- $378\ 00:19:45.350 \longrightarrow 00:19:48.260$ when we used microfluids before.
- 379 00:19:48.260 --> 00:19:50.300 And I thought that's unfortunate
- 380 00:19:50.300 --> 00:19:51.440 but anyhow, let's go ahead
- $381\ 00:19:51.440 \longrightarrow 00:19:53.640$ and process the sequencing data.
- $382\ 00:19:53.640 --> 00:19:55.820$ But turns out that's not a key wide fiber
- $383\ 00:19:55.820 \longrightarrow 00:19:58.150$ that's really a very thin layer,
- $384\ 00:19:58.150 \longrightarrow 00:20:02.320$ actually it's a single cell layer of melanocytes
- $385\ 00:20:02.320 --> 00:20:04.610$ lining a round the eye field.
- $386\ 00:20:04.610 \longrightarrow 00:20:06.950$ At this stage, the eye field actually,
- 387 00:20:06.950 --> 00:20:09.320 it's a very, very early stage only,
- $388\ 00:20:09.320 --> 00:20:13.130$ called the eye vesicle an even no optical caps,
- $389\ 00:20:13.130 \longrightarrow 00:20:15.140$ it's the optical vesicle.
- 390 00:20:15.140 --> 00:20:19.327 So we can see, very distinctly, a group of genes
- 391 00:20:19.327 --> 00:20:22.230 strongly enriched inside the eye
- 392 00:20:22.230 --> 00:20:27.000 and also lining around the eye, optical vesicle.
- 393 00:20:27.000 --> 00:20:30.600 And then when we put them together,
- $394\ 00:20:30.600 \longrightarrow 00:20:32.930$ a little bit more structures you can see.
- 395 00:20:32.930 --> 00:20:36.250 For example in Pax6 enriched pretty much
- $396\ 00:20:36.250 \longrightarrow 00:20:38.180$ in an entire eye field
- $397\ 00:20:38.180 \longrightarrow 00:20:42.700$ but also in this region is optical nerve fiber.
- $398\ 00:20:42.700 \longrightarrow 00:20:47.170$ But here this protein, only expressed in the eye,
- $399\ 00{:}20{:}47.170 \dashrightarrow 00{:}20{:}50.630$ but also other tissue type but not so much optical fiber.
- $400\ 00{:}20{:}50.630 \dashrightarrow 00{:}20{:}53.723$ You can see this very well at a very high resolution,
- 401 00:20:53.723 --> 00:20:57.050 it's really about a single cell resolution.
- 402 00:20:57.050 --> 00:20:59.340 So, okay, when you look at it carefully,
- $403\ 00:20:59.340 \longrightarrow 00:21:01.220$ you see some yellow spots over here.
- $404\ 00{:}21{:}01.220 \dashrightarrow 00{:}21{:}05.050$ That means the Pax6 and the Pmel are actually co-expressed

- $405\ 00{:}21{:}05.050 \dashrightarrow 00{:}21{:}08.877$ in those kinda melanoblast cells but this one is not.
- 406 00:21:08.877 --> 00:21:10.880 The Six6 is not expressed,
- $407\ 00:21:10.880 \longrightarrow 00:21:14.900$ only within the eye, optical vesicle.
- 408 00:21:14.900 --> 00:21:16.870 If you further zoom in, you can see
- 409 00:21:18.160 --> 00:21:20.770 the sort of gene expression within the vesicle
- $410\ 00{:}21{:}20.770 --> 00{:}21{:}24.160$ and also individual pixels, every little square here.
- $411\ 00:21:24.160 \longrightarrow 00:21:26.340$ So we can overlay the tissue image
- $412\ 00:21:26.340 \longrightarrow 00:21:29.083$ and the transcriptome data.
- 413 00:21:29.083 --> 00:21:31.390 So we noticed one gene which
- 414 00:21:33.141 --> 00:21:35.820 is strongly enriched right here,
- $415\ 00:21:35.820 \longrightarrow 00:21:39.278$ very strongly differential expression spatially.
- $416\ 00:21:39.278 \longrightarrow 00:21:42.150$ We're all curious what this gene does.
- 417 00:21:42.150 --> 00:21:45.500 We did sort of,
- $418\ 00{:}21{:}45.500 \dashrightarrow 00{:}21{:}49.350$ this time they're still global, gene differential analysis.
- $419\ 00{:}21{:}49.350 \dashrightarrow 00{:}21{:}54.350$ We saw only top ranked genes and these two showed up.
- $420\ 00:21:54.590 \longrightarrow 00:21:59.590$ But we found their functioning on a top ranked pathways,
- $421\ 00:22:00.567 \longrightarrow 00:22:03.970$ to some degree, okay, except those ones,
- 422 00:22:03.970 --> 00:22:06.290 to some degree, are mutually exclusive.
- 423 00:22:06.290 --> 00:22:09.760 And then later we realized
- $424\ 00:22:09.760 --> 00:22:12.200$ but that has never been observed before,
- 425 00:22:12.200 --> 00:22:15.490 I don't have sort of last year's data to support.
- 426~00:22:15.490 --> 00:22:17.910 But it seems like those cells
- 427 00:22:20.550 --> 00:22:23.090 sort of characterized by this particular gene,
- $428\ 00:22:23.090 \longrightarrow 00:22:26.670$ later on are gonna determine the development of the lens.
- 429 00:22:26.670 --> 00:22:29.740 And those cells, even at this stage,
- $430\ 00:22:29.740 \longrightarrow 00:22:32.450$ you don't see any morphological difference,
- $431\ 00:22:32.450 \longrightarrow 00:22:35.180$ they already predetermined to develop

- $432\ 00:22:35.180 \longrightarrow 00:22:38.990$ the retina and the photo receptor cells.
- $433\ 00:22:38.990 \longrightarrow 00:22:41.110$ And then we were able to basically
- 434 00:22:41.110 --> 00:22:42.870 just put out those pictures obviously
- $435\ 00:22:42.870 \longrightarrow 00:22:44.990$ and compare it to those to perform
- $436\ 00:22:44.990 \longrightarrow 00:22:46.960$ a differential gene expression analysis.
- $437\ 00:22:46.960 \longrightarrow 00:22:50.570$ And another surprise, now this gene just showed up
- 438 00:22:50.570 --> 00:22:53.660 extremely differentially expressed.
- $439\ 00:22:53.660 \longrightarrow 00:22:58.210$ But we see many other genes that were very interesting.
- $440\ 00:22:58.210 \longrightarrow 00:23:00.653$ We still try to look into the details.
- $441\ 00:23:00.653 \longrightarrow 00:23:03.701$ So they are kinda enriched on the left side.
- 442 00:23:03.701 --> 00:23:07.402 Eventually, very likely,
- $443\ 00:23:07.402 \longrightarrow 00:23:12.273$ they will contribute to the photo receptor cell development.
- 444 00:23:13.450 --> 00:23:14.930 Okay, so even though we're able
- 445 00:23:14.930 --> 00:23:16.860 to visualize individual genes,
- 446 00:23:16.860 --> 00:23:18.810 we don't have to use the gene cell enrichment
- 447 00:23:18.810 --> 00:23:21.057 to identify different tissue types,
- $448\ 00:23:21.057 --> 00:23:23.860$ but we had a challenge in particular
- 449 00:23:23.860 --> 00:23:25.510 in this kind of eye field region,
- $450\ 00{:}23{:}26.845 --> 00{:}23{:}31.470$ due to our lack of knowledge in mouse embryonic development.
- $451\ 00{:}23{:}31.470 \longrightarrow 00{:}23{:}34.550$ But it'll be great if some computational pipeline
- 452 00:23:34.550 --> 00:23:37.210 can automatically identify different features,
- $453\ 00:23:37.210 \longrightarrow 00:23:38.043$ tissue features.
- $454\ 00:23:38.043 \longrightarrow 00:23:41.170$ That's what we demonstrate as well.
- 455 00:23:41.170 --> 00:23:44.124 So using this automatic automated
- 456 00:23:44.124 --> 00:23:46.540 feature identification pipeline,
- $457\ 00{:}23{:}46.540 \dashrightarrow 00{:}23{:}49.310$ we were able to identify actually 20 different features
- $458\ 00:23:49.310 --> 00:23:52.240$ in this very small region of the brain

- $459\ 00:23:52.240 \longrightarrow 00:23:54.420$ around the eye field.
- 460 00:23:54.420 --> 00:23:57.814 I just will show you some of those,
- $461\ 00:23:57.814 --> 00:24:00.480$ you can see not just the eye, actually you can see
- $462\ 00:24:00.480 \longrightarrow 00:24:02.520$ very already development of the ear
- 463 00:24:02.520 --> 00:24:06.510 based on the sort of gene expression,
- $464\ 00{:}24{:}06.510 \dashrightarrow 00{:}24{:}10.593$ but histologically, you cannot see any difference at all.
- $465\ 00:24:12.460$ --> 00:24:17.460 But we also look at entire mouse embryo the E10.
- $466\ 00{:}24{:}17.620 \dashrightarrow 00{:}24{:}20.720$ We're able to identify about 20 different features.
- 467 00:24:20.720 --> 00:24:24.560 But we're asking, so if at later stage
- $468\ 00:24:24.560 \longrightarrow 00:24:26.460$ many other organs begin to develop,
- $469\ 00{:}24{:}26.460 {\:\raisebox{---}{\text{---}}}> 00{:}24{:}29.374$ whether or not this pipeline can identify many more
- $470\ 00:24:29.374 \longrightarrow 00:24:33.230$ tissue features or tissue subtypes.
- 471 00:24:33.230 --> 00:24:35.840 That turns out that that's right.
- $472\ 00{:}24{:}35.840 \dashrightarrow 00{:}24{:}39.470$ And using E12, we're now able to cover entire embryo
- $473\ 00:24:39.470 \longrightarrow 00:24:42.570$ actually just the lower part of the body,
- $474\ 00:24:42.570 \longrightarrow 00:24:45.493$ we identify about 40 different features already.
- $475\ 00:24:46.517 \longrightarrow 00:24:50.940$ So this is a very high resolution as well.
- 476 00:24:50.940 --> 00:24:53.663 Okay, I'm gonna just summarize
- $477\ 00:24:53.663 --> 00:24:58.663$ back to my sort of, the main interest in cancer.
- 478 00:24:59.260 --> 00:25:02.260 So I believe this enabling platform,
- $479\ 00{:}25{:}02.260 \dashrightarrow 00{:}25{:}04.880$ we demonstrate can do protein and the transcripts.
- $480\ 00:25:04.880 --> 00:25:08.440$ But actually, in my lab, another post I'm working on,
- $481\ 00:25:08.440 \longrightarrow 00:25:11.220$ so spatial, high spatial resolution epigenomics.
- $482\ 00:25:11.220 \longrightarrow 00:25:13.060$ I believe we can do high res,
- 483 00:25:13.060 --> 00:25:14.610 high spatial resolution ATAC,

484 00:25:14.610 --> 00:25:16.900 high spatial resolution CHIP-seq.

 $485\ 00{:}25{:}16.900 {\:{\mbox{--}}}{>}\ 00{:}25{:}19.007$ And the application is extremely broad

 $486~00{:}25{:}19.007 \dashrightarrow 00{:}25{:}21.310$ and the cancer is put right in the middle

 $487~00{:}25{:}21.310 \dashrightarrow 00{:}25{:}25.180$ because that's really my main focus.

 $488\ 00{:}25{:}25.180 \dashrightarrow 00{:}25{:}28.360$ I will like to thank people in my lab who work on this

 $489\ 00:25:28.360 --> 00:25:30.083$ and thank you for your attention.