2016
Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells
Forloni M, Gupta R, Nagarajan A, Sun LS, Dong Y, Pirazzoli V, Toki M, Wurtz A, Melnick MA, Kobayashi S, Homer RJ, Rimm DL, Gettinger SJ, Politi K, Dogra SK, Wajapeyee N. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells. Cell Reports 2016, 16: 457-471. PMID: 27346347, PMCID: PMC4945411, DOI: 10.1016/j.celrep.2016.05.087.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAntineoplastic AgentsBrain NeoplasmsCCAAT-Enhancer-Binding ProteinsCell Line, TumorCpG IslandsDNA MethylationDrug Screening Assays, AntitumorErbB ReceptorsGene Expression Regulation, NeoplasticGene SilencingGlioblastomaHumansLung NeoplasmsMAP Kinase Signaling SystemMixed Function OxygenasesMutationOncogenesProtein Kinase InhibitorsProto-Oncogene ProteinsTranscription, GeneticTumor Suppressor ProteinsUp-RegulationConceptsOncogenic epidermal growth factor receptorMethylation-mediated transcriptional silencingEpidermal growth factor receptorTumor suppressorTranscriptional silencingActive DNA demethylationCancer cellsFamily member 1TET1 knockdownDNA demethylaseDNA demethylationTranscription factorsGrowth factor receptorEctopic expressionCytoplasmic localizationGlioblastoma tumor growthLung cancer cellsTET1 expressionFunctional roleSuppressorFactor receptorMember 1TET1SilencingLung cancer samples
2011
β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas
Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M. β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell 2011, 20: 741-754. PMID: 22172720, PMCID: PMC3241928, DOI: 10.1016/j.ccr.2011.10.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationBenzamidesBeta CateninCell Transformation, NeoplasticColorectal NeoplasmsEnzyme ActivationGene Knockdown TechniquesHumansImatinib MesylateKaplan-Meier EstimateLung NeoplasmsLymphatic MetastasisMelanocytesMelanoma, ExperimentalMiceMice, 129 StrainMice, Inbred C57BLMice, TransgenicPhosphorylationPiperazinesProtein StabilityProto-Oncogene Proteins B-rafProto-Oncogene Proteins c-aktPTEN PhosphohydrolasePyrimidinesSignal TransductionSkin NeoplasmsSplenic NeoplasmsTranscription, GeneticTumor Cells, CulturedConceptsΒ-catenin levelsPI3K/AktLymph nodesMetastatic tumorsFrequent metastasisTumor differentiationMalignant melanomaMAPK/ERKMelanoma metastasesMouse modelControl metastasisHuman melanomaMelanomaMetastasisΒ-catenin stabilizationPTEN lossCentral mediatorMetastasis regulatorsΒ-cateninSpecific changesFunctional implicationsWntLung
2009
Analysis of Drosophila Segmentation Network Identifies a JNK Pathway Factor Overexpressed in Kidney Cancer
Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Nègre N, Ludwig M, Stricker T, Al-Ahmadie HA, Tretiakova M, Camp RL, Perera-Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP. Analysis of Drosophila Segmentation Network Identifies a JNK Pathway Factor Overexpressed in Kidney Cancer. Science 2009, 323: 1218-1222. PMID: 19164706, PMCID: PMC2756524, DOI: 10.1126/science.1157669.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsApoptosisCarcinoma, Renal CellCell LineCompound Eye, ArthropodDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianFushi Tarazu Transcription FactorsGene Expression ProfilingGene Regulatory NetworksHomeodomain ProteinsHumansJanus KinasesKidneyKidney NeoplasmsMolecular Sequence DataNervous SystemNuclear ProteinsPhosphoprotein PhosphatasesPhosphorylationRepressor ProteinsSignal TransductionTranscription FactorsTranscription, GeneticConceptsTranscription factorsClear cell renal cell carcinomaCell renal cell carcinomaKey transcription factorDrosophila segmentation networkConserved roleEmbryonic segmentationDrosophila melanogasterUbiquitin E3JNK signalingDependent apoptosisSPOPRenal cell carcinomaSPOP expressionKidney cancerTumor necrosis factorNew roleDrosophilaMelanogasterPuckeredGenesSignalingOverexpressedIdentificationApoptosis
2006
Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma
Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, Mercurio AM. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 2006, 25: 6959-6967. PMID: 16715134, DOI: 10.1038/sj.onc.1209682.Peer-Reviewed Original ResearchMeSH KeywordsBiomarkers, TumorCadherinsCell Line, TumorColonic NeoplasmsEnzyme ActivationEpithelial CellsHumansImmunohistochemistryImmunoprecipitationNeoplasm InvasivenessPrognosisPromoter Regions, GeneticProto-Oncogene Protein c-ets-1Reverse Transcriptase Polymerase Chain ReactionRho GTP-Binding ProteinsRhoA GTP-Binding ProteinRhoC GTP-Binding ProteinRNA, Small InterferingTranscription, GeneticConceptsColon carcinomaRhoC expressionPrognostic markerRhoC protein expressionE-cadherinET-1 binding sitesClinical outcomesPoor outcomeColon cancer cellsColorectal tumorsET-1Colon cancerUse of shRNAMesenchymal transitionExpression correlatesCarcinomaAberrant expressionHigh expressionProtein expressionCancer cellsMesenchymal characteristicsEMTSubsequent activationReciprocal regulationCell migration
1999
Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer.
Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, Rimm DL, Costa J, Fearon ER. Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Molecular Cancer Research 1999, 10: 369-76. PMID: 10392898.Peer-Reviewed Original ResearchMeSH KeywordsAdenomatous Polyposis Coli ProteinAmino Acid SequenceAnimalsBeta CateninCadherinsCytoskeletal ProteinsDesmoplakinsDNA-Binding ProteinsGamma CateninGene Expression Regulation, NeoplasticHMGB ProteinsHumansLymphoid Enhancer-Binding Factor 1Molecular Sequence DataMutagenesisPancreatic NeoplasmsStomach NeoplasmsTCF Transcription FactorsTrans-ActivatorsTranscription Factor 7-Like 1 ProteinTranscription FactorsTranscription, GeneticTumor Cells, CulturedConceptsPhosphorylation sitesMutant proteinsGlycogen synthase kinase 3beta phosphorylation sitesGlycogen synthase kinase-3betaFactor transcription factorsPotential phosphorylation sitesSynthase kinase-3betaTCF transcriptional activityE-cadherin inactivationNH2-terminal deletionsRole of APCImportant binding partnerSerine 28TCF transcriptionTranscriptional deregulationT-cell factorBinding partnerTranscription factorsAPC proteinKinase-3betaTranscriptional activityNH2 terminusAdenomatous polyposis coli (APC) mutationsCell adhesionPancreatic cancer lines
1997
Transcriptional defects underlie loss of E-cadherin expression in breast cancer.
Ji X, Woodard AS, Rimm DL, Fearon ER. Transcriptional defects underlie loss of E-cadherin expression in breast cancer. Molecular Cancer Research 1997, 8: 773-8. PMID: 9218871.Peer-Reviewed Original ResearchMeSH KeywordsAntimetabolites, AntineoplasticAzacitidineBreast NeoplasmsCadherinsCloning, MolecularDecitabineDNA MethylationDNA-Binding ProteinsGene Expression Regulation, NeoplasticHumansPromoter Regions, GeneticTrans-ActivatorsTranscription Factor AP-2Transcription FactorsTranscription, GeneticTumor Cells, CulturedConceptsE-cad expressionBreast cancerEpithelial cancersHuman breast cancer cell linesMost breast cancersDifferent epithelial cancersBreast cancer cell linesMajority of cancersE-cadherin expressionCancer cell linesCell adhesion moleculeProgression eventsCancerAdhesion moleculesTumor heterogeneityE-cadherinFunctional assaysCell linesSomatic mutationsE-cad geneGene expression differencesExpressionPromoter activityGene expressionReporter gene constructs
1994
Molecular Cloning Reveals Alternative Splice Forms of Human α(E)-Catenin
Rimm DL, Kebriaei P, Morrow JS. Molecular Cloning Reveals Alternative Splice Forms of Human α(E)-Catenin. Biochemical And Biophysical Research Communications 1994, 203: 1691-1699. PMID: 7945318, DOI: 10.1006/bbrc.1994.2381.Peer-Reviewed Original ResearchMeSH KeywordsAlpha CateninAlternative SplicingAmino Acid SequenceAnimalsBase SequenceCadherinsCell LineChickensCloning, MolecularConserved SequenceCytoskeletal ProteinsDNA, ComplementaryDrosophilaHominidaeHumansMiceMolecular Sequence DataPhylogenyPolymerase Chain ReactionRNA, MessengerSequence Homology, Amino AcidTranscription, GeneticConceptsCadherin cell-cell adhesion complexCell-cell adhesion complexAmino acid proteinAlternative splice formsSuperfamily of proteinsAmino acid insertionTranscription sitesAdhesion complexesCytoplasmic domainDistinct transcriptsMolecular cloningSingle geneAcid proteinSplice formsAcid insertionSecond transcriptCatenin geneSplice siteNon-epithelial tissuesVinculinTranscriptsCateninHuman alphaSouthern blottingProtein