2001
Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesis
2000
The GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von Heijne
Russ W, Engelman D. The GxxxG motif: A framework for transmembrane helix-helix association11Edited by G. von Heijne. Journal Of Molecular Biology 2000, 296: 911-919. PMID: 10677291, DOI: 10.1006/jmbi.1999.3489.Peer-Reviewed Original ResearchAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacterial ProteinsBinding SitesChloramphenicol ResistanceCloning, MolecularConsensus SequenceDatabases, FactualDimerizationDNA-Binding ProteinsEscherichia coliGlycophorinsIntracellular MembranesMembrane ProteinsModels, MolecularPeptide LibraryProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsTranscription Factors
1999
Visual Arrestin Activity May Be Regulated by Self-association*
Schubert C, Hirsch J, Gurevich V, Engelman D, Sigler P, Fleming K. Visual Arrestin Activity May Be Regulated by Self-association*. Journal Of Biological Chemistry 1999, 274: 21186-21190. PMID: 10409673, DOI: 10.1074/jbc.274.30.21186.Peer-Reviewed Original ResearchTOXCAT: A measure of transmembrane helix association in a biological membrane
Russ W, Engelman D. TOXCAT: A measure of transmembrane helix association in a biological membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 863-868. PMID: 9927659, PMCID: PMC15316, DOI: 10.1073/pnas.96.3.863.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBase SequenceCarrier ProteinsCell MembraneChloramphenicol O-AcetyltransferaseDNA PrimersDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGene LibraryGenes, ReporterGenetic Complementation TestMacromolecular SubstancesMaltose-Binding ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMonosaccharide Transport ProteinsPeriplasmic Binding ProteinsProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsSpheroplastsTranscription FactorsConceptsTOXCAT systemDetergent micellesHelical membrane proteinsN-terminal DNATransmembrane helix associationTransmembrane alpha-helixReporter gene encoding chloramphenicolNatural membrane environmentGene encoding chloramphenicolTransmembrane domainTM associationTM dimerizationMembrane proteinsMembrane environmentOligomerization motifPolar residuesAlpha-helixHelix associationSequence specificityChimeric constructsCAT expressionBiological membranesFundamental eventNoncovalent associationAssay distinguishes
1997
The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelix
1991
Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structure
Gilles-Gonzalez M, Engelman D, Khorana H. Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structure. Journal Of Biological Chemistry 1991, 266: 8545-8550. PMID: 2022666, DOI: 10.1016/s0021-9258(18)93009-7.Peer-Reviewed Original ResearchSmall-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.Peer-Reviewed Original ResearchConceptsLinker regionCentral helixCalcium-dependent conformational changeWild-type proteinCentral linker regionSmall-angle X-rayAlpha-helical conformationGlu-84Calmodulin mutantsMutant formsGlu-83Wild typeMutantsNative proteinConformational changesCalmodulinProteinSer-81DeletionPresence of Ca2Binding of melittinSignificant size changesGlobular conformationRadius of gyrationHelix
1988
Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli
Capel M, Kjeldgaard M, Engelman D, Moore P. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1988, 200: 65-87. PMID: 3288761, DOI: 10.1016/0022-2836(88)90334-8.Peer-Reviewed Original Research
1987
A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coli
Capel M, Engelman D, Freeborn B, Kjeldgaard M, Langer J, Ramakrishnan V, Schindler D, Schneider D, Schoenborn B, Sillers I, Yabuki S, Moore P. A Complete Mapping of the Proteins in the Small Ribosomal Subunit of Escherichia coli. Science 1987, 238: 1403-1406. PMID: 3317832, DOI: 10.1126/science.3317832.Peer-Reviewed Original Research
1984
Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli
Ramakrishnan V, Capel M, Kjeldgaard M, Engelman D, Moore P. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1984, 174: 265-284. PMID: 6371250, DOI: 10.1016/0022-2836(84)90338-3.Peer-Reviewed Original ResearchNeutron Scattering and the 30 S Ribosomal Subunit of E. coli
Moore P, Engelman D, Langer J, Ramakrishnan V, Schindler D, Schoenborn B, Sillers I, Yabuki S. Neutron Scattering and the 30 S Ribosomal Subunit of E. coli. Basic Life Sciences 1984, 27: 73-91. PMID: 6370225, DOI: 10.1007/978-1-4899-0375-4_4.Peer-Reviewed Original Research
1981
Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli
Ramakrishnan V, Yabuki S, Sillers I, Schindler D, Engelman D, Moore P. Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1981, 153: 739-760. PMID: 7040690, DOI: 10.1016/0022-2836(81)90416-2.Peer-Reviewed Original Research
1979
Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coli
Schindler D, Langer J, Engelman D, Moore P. Positions of proteins S10, S11 and S12 in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1979, 134: 595-620. PMID: 395318, DOI: 10.1016/0022-2836(79)90369-3.Peer-Reviewed Original Research
1978
X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit
LAUGHREA M, ENGELMAN D, MOORE P. X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit. The FEBS Journal 1978, 85: 529-534. PMID: 348475, DOI: 10.1111/j.1432-1033.1978.tb12268.x.Peer-Reviewed Original ResearchNeutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit
Langer J, Engelman D, Moore P. Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit. Journal Of Molecular Biology 1978, 119: 463-485. PMID: 347087, DOI: 10.1016/0022-2836(78)90197-3.Peer-Reviewed Original Research
1976
Protein pair distance determination in the 30 S ribosomal subunit of E. coli.
Engelman D, Moore P, Schoenborn B. Protein pair distance determination in the 30 S ribosomal subunit of E. coli. Brookhaven Symposia In Biology 1976, iv20-iv37. PMID: 786445.Peer-Reviewed Original ResearchThe production of deuterated E. coli.
Moore P, Engelman D. The production of deuterated E. coli. Brookhaven Symposia In Biology 1976, v12-v23. PMID: 786448.Peer-Reviewed Original Research
1975
Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7.
Engelman D, Moore P, Schoenborn B. Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 3888-3892. PMID: 1105567, PMCID: PMC433101, DOI: 10.1073/pnas.72.10.3888.Peer-Reviewed Original ResearchDetermination of Quaternary Structure by Small Angle Neutron Scattering
Engelman D, Moore P. Determination of Quaternary Structure by Small Angle Neutron Scattering. Annual Review Of Biophysics And Bioengineering 1975, 4: 219-241. PMID: 1098555, DOI: 10.1146/annurev.bb.04.060175.001251.Peer-Reviewed Original ResearchA neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coli
Moore P, Engelman D, Schoenborn B. A neutron scattering study of the distribution of protein and RNA in the 30 S ribosomal subunit of Escherichia coli. Journal Of Molecular Biology 1975, 91: 101-120. PMID: 1102695, DOI: 10.1016/0022-2836(75)90374-5.Peer-Reviewed Original Research