2023
APOBEC-1 deletion enhances cisplatin-induced acute kidney injury
Guo X, Blanc V, Davidson N, Velazquez H, Chen T, Moledina D, Moeckel G, Safirstein R, Desir G. APOBEC-1 deletion enhances cisplatin-induced acute kidney injury. Scientific Reports 2023, 13: 22255. PMID: 38097707, PMCID: PMC10721635, DOI: 10.1038/s41598-023-49575-3.Peer-Reviewed Original Research
2022
Kidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation
Guo X, Xu L, Velazquez H, Chen TM, Williams RM, Heller DA, Burtness B, Safirstein R, Desir GV. Kidney-Targeted Renalase Agonist Prevents Cisplatin-Induced Chronic Kidney Disease by Inhibiting Regulated Necrosis and Inflammation. Journal Of The American Society Of Nephrology 2022, 33: 342-356. PMID: 34921111, PMCID: PMC8819981, DOI: 10.1681/asn.2021040439.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntineoplastic AgentsCell LineCisplatinCreatinineDisease Models, AnimalGene ExpressionGlomerular Filtration RateHepatitis A Virus Cellular Receptor 1HumansKidneyMiceMice, Inbred C57BLMice, KnockoutMonoamine OxidaseNanocapsulesPeptidesRenal Insufficiency, ChronicConceptsRenal proximal tubulesSingle-cell RNA sequencing analysisMesoscale nanoparticlesFirst doseCisplatin chemotherapyProximal tubulesAgonist peptideInduced Chronic Kidney DiseaseGenetic deletionNeck squamous cell carcinomaRNA sequencing analysisCisplatin-induced AKIKidney-targeted deliveryChronic kidney diseaseDevelopment of CKDSquamous cell carcinomaAdministration of cisplatinPlasma renalaseAdvanced headCell carcinomaInflammatory cytokinesKidney diseasePlasma creatinineSystemic administrationRegulated necrosis
2017
The serum protein renalase reduces injury in experimental pancreatitis
Kolodecik TR, Reed AM, Date K, Shugrue C, Patel V, Chung SL, Desir GV, Gorelick FS. The serum protein renalase reduces injury in experimental pancreatitis. Journal Of Biological Chemistry 2017, 292: 21047-21059. PMID: 29042438, PMCID: PMC5743078, DOI: 10.1074/jbc.m117.789776.Peer-Reviewed Original ResearchMeSH KeywordsAcinar CellsAnimalsAnti-Inflammatory Agents, Non-SteroidalBiomarkersCalcium SignalingCarbacholCell LineCeruletideEnzyme ActivationFluorescent Antibody Technique, IndirectGene Expression Regulation, EnzymologicHumansHypertensionLigandsMembrane Transport ModulatorsMiceMice, KnockoutMonoamine OxidasePancreasPancreatitisPlasma Membrane Calcium-Transporting ATPasesRecombinant Fusion ProteinsTaurolithocholic AcidConceptsRecombinant human renalaseAcute pancreatitisAcute injuryCell injuryAcinar cell injuryHuman acinar cellsCytosolic calcium levelsPlasma membrane calcium ATPasePancreatitis onsetIschemic injuryWT micePathological increaseHistological changesProtective effectSevere diseaseMurine modelMembrane calcium ATPasePancreatitisCalcium levelsExperimental pancreatitisBile acidsTissue damageRenalaseInjuryCerulein model
2014
Renalase regulates peripheral and central dopaminergic activities
Quelhas-Santos J, Serrão MP, Soares-Silva I, Fernandes-Cerqueira C, Simões-Silva L, Pinho MJ, Remião F, Sampaio-Maia B, Desir GV, Pestana M. Renalase regulates peripheral and central dopaminergic activities. American Journal Of Physiology. Renal Physiology 2014, 308: f84-f91. PMID: 25411385, PMCID: PMC4338928, DOI: 10.1152/ajprenal.00274.2014.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainDopamineDopaminergic NeuronsJejunumKidneyMaleMice, Inbred C57BLMice, KnockoutMonoamine OxidaseConceptsKO miceUrinary excretionPlasma levelsDopaminergic activityIncreased Plasma LevelsPeripheral dopaminergic activityUrine catecholamine levelsRenal dopaminergic systemCentral dopaminergic activityL-type amino acid transporterWild-type miceAmino acid decarboxylase activityKnockout mouse modelRenalase deficiencyCatecholamine levelsDA outputUrinary dopamineAADC activityDopaminergic systemRenal cortexMouse modelDOPA ratioVivo administrationOverexpression of LAT1Amino acid transportersRenalase Prevents AKI Independent of Amine Oxidase Activity
Wang L, Velazquez H, Moeckel G, Chang J, Ham A, Lee HT, Safirstein R, Desir GV. Renalase Prevents AKI Independent of Amine Oxidase Activity. Journal Of The American Society Of Nephrology 2014, 25: 1226-1235. PMID: 24511138, PMCID: PMC4033373, DOI: 10.1681/asn.2013060665.Peer-Reviewed Original ResearchConceptsIschemic injuryCatecholamine levelsRecombinant renalaseAmine oxidase activityHuman proximal tubular cellsCisplatin-induced AKITreatment of AKIWild-type miceHK-2 cellsProximal tubular cellsOxidase activityKidney injuryRenal injuryC-Jun N-terminal kinaseExtracellular signal-regulated kinaseP38 mitogen-activated protein kinaseToxic injuryRenalase proteinTubular cellsSignal-regulated kinaseIntracellular signaling cascadesRenalaseInjuryMitogen-activated protein kinaseN-terminal kinase
2013
Renalase regulates renal dopamine and phosphate metabolism
Sizova D, Velazquez H, Sampaio-Maia B, Quelhas-Santos J, Pestana M, Desir GV. Renalase regulates renal dopamine and phosphate metabolism. American Journal Of Physiology. Renal Physiology 2013, 305: f839-f844. PMID: 23863468, PMCID: PMC3761288, DOI: 10.1152/ajprenal.00616.2012.Peer-Reviewed Original ResearchConceptsRenal DA synthesisKO micePO4 excretionDA synthesisSodium-phosphate cotransporter Npt2aCatecholamine-degrading enzymeIntrinsic renal defectRenal dopamine synthesisWild-type miceKO mice showKnockout mouse modelDopa excretionRenalase deficiencySevere hypophosphatemiaRenal dopamineSerum PO4Urinary dopaminePhosphate excretionRegular dietDietary phosphateDopamine synthesisMouse modelMice showCompensatory increaseRenal defectsRenalase Protects against Ischemic AKI
Lee HT, Kim JY, Kim M, Wang P, Tang L, Baroni S, D’Agati V, Desir GV. Renalase Protects against Ischemic AKI. Journal Of The American Society Of Nephrology 2013, 24: 445-455. PMID: 23393318, PMCID: PMC3582209, DOI: 10.1681/asn.2012090943.Peer-Reviewed Original ResearchMeSH KeywordsAcute Kidney InjuryAdrenergic alpha-AntagonistsAnimalsApoptosisGene ExpressionHumansInflammation MediatorsIschemiaKidney Tubular Necrosis, AcuteMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutMonoamine OxidaseNeutrophil InfiltrationNorepinephrinePhentolamineRecombinant ProteinsReperfusion InjuryRNA, MessengerConceptsRenal ischemia-reperfusion injuryIschemia-reperfusion injuryIschemic AKIWild-type miceReperfusion injuryCatecholamine levelsRenal tubular inflammationTreatment of AKIRenal ischemia reperfusionSham-operated micePlasma catecholamine levelsRenal tubular necrosisRecombinant human renalasePlasma renalaseTubular inflammationTubular necrosisIschemia reperfusionNE levelsPlasma catecholaminesMyocardial necrosisInflammatory responseProximal tubulesAKIRenalaseMice
2011
Novel insights into the physiology of renalase and its role in hypertension and heart disease
Desir G. Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatric Nephrology 2011, 27: 719-725. PMID: 21424526, DOI: 10.1007/s00467-011-1828-7.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseKidney diseaseResistant hypertensionSympathetic toneBlood pressureRecombinant renalaseSpontaneously Hypertensive Stroke-PronePlasma renalase levelsRenalase knockout mouseSystolic blood pressureModel of hypertensionPotent antihypertensive agentSevere cardiac hypertrophyRenalase deficiencyRenalase levelsRenal functionUrine catecholaminesEssential hypertensionSalt intakeStroke proneAntihypertensive agentsCatecholamine levelsRenal sodiumSingle dosePlasma levels
2010
Renalase deficiency aggravates ischemic myocardial damage
Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell RA, Pestana M, Giordano F, Desir GV. Renalase deficiency aggravates ischemic myocardial damage. Kidney International 2010, 79: 853-860. PMID: 21178975, DOI: 10.1038/ki.2010.488.Peer-Reviewed Original ResearchConceptsChronic kidney diseaseWild-type miceRenalase deficiencyKnockout micePlasma blood urea nitrogenLevels of renalaseMild ventricular hypertrophyRenalase knockout mouseNormal systolic functionTraditional risk factorsPlasma catecholamine levelsIschemic myocardial damageBlood urea nitrogenCardiac complicationsCardiovascular complicationsSystolic functionVentricular hypertrophyCardioprotective effectsCatecholamine levelsKidney diseaseMyocardial damageMyocardial necrosisRecombinant renalaseRisk factorsCardiac ischemia
2004
The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity
Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 3112-3117. PMID: 14981264, PMCID: PMC365752, DOI: 10.1073/pnas.0308450100.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBiological TransportFastingGlucoseInsulinInterleukin-6JNK Mitogen-Activated Protein KinasesKineticsKv1.3 Potassium ChannelMaleMiceMice, Inbred C57BLMice, KnockoutMice, ObeseMitogen-Activated Protein KinasesModels, BiologicalMuscle, SkeletalPotassium ChannelsPotassium Channels, Voltage-GatedTumor Necrosis Factor-alphaConceptsKv1.3-/- micePeripheral glucose homeostasisPeripheral insulin sensitivityPlasma membraneGene inactivationInsulin sensitivityAmount of GLUT4Skeletal muscleTerminal kinase (JNK) activityGlucose homeostasisAdipose tissueLower blood insulin levelsVoltage-gated potassium channelsInsulin-stimulated glucose uptakeVoltage-gated potassium channel Kv1.3Tumor necrosis factor productionExperimental autoimmune encephalitisBlood insulin levelsHigh-fat dietPotassium channel Kv1.3Tumor necrosis factor secretionPeripheral T lymphocytesKinase activityNecrosis factor productionNumber of tissues