Jay Humphrey, PhD
John C. Malone Professor of Biomedical EngineeringCards
About
Research
Publications
2025
Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models.
Daugherty A, Milewicz D, Dichek D, Ghaghada K, Humphrey J, LeMaire S, Li Y, Mallat Z, Saeys Y, Sawada H, Shen Y, Suzuki T, Zhou Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arteriosclerosis Thrombosis And Vascular Biology 2025 PMID: 40079138, DOI: 10.1161/atvbaha.124.320259.Peer-Reviewed Original ResearchShort-term disruption of TGFβ signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection
Jiang B, Ren P, He C, Wang M, Murtada S, Ruiz-Rodríguez M, Chen Y, Ramachandra A, Li G, Qin L, Assi R, Schwartz M, Humphrey J, Tellides G. Short-term disruption of TGFβ signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection. JCI Insight 2025, 10 PMID: 39932797, PMCID: PMC11949005, DOI: 10.1172/jci.insight.182629.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsBlood pressureAortic dissectionAdult miceInherited connective tissue disorderConnective tissue disordersTGF-b signalingAccumulation of bloodHigh blood pressureAortic phenotypeTissue disordersMolecule expressionTGFB signalingMuscle cellsRisk factorsSynthesis of extracellular matrixSustained increaseTransient increaseBlood extravasationDissectionMedial injuryExtracellular matrix productionVascular degenerationExperimental modelMiceMulti-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension
Estrada A, Humphrey J. Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension. Annals Of Biomedical Engineering 2025, 53: 1014-1023. PMID: 39904866, DOI: 10.1007/s10439-025-03685-3.Peer-Reviewed Original ResearchBiomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling
Holzapfel G, Humphrey J, Ogden R. Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling. Journal Of The Royal Society Interface 2025, 22: 20240361. PMID: 39876788, PMCID: PMC11775666, DOI: 10.1098/rsif.2024.0361.Peer-Reviewed Original ResearchConceptsSoft biological tissuesConstitutive relationsLoad-bearing soft tissuesNonlinear stress analysisMethods of continuum mechanicsInelastic constitutive relationsBiomechanics of soft biological tissueDiverse loading conditionsBiological tissuesConstitutive formulationLocal mechanical environmentMechanical behaviorStress analysisLoading conditionsContinuum mechanicsMechanical responseDiverse microstructuresMulti-axialMechanical environmentMechanobiologyTissue propertiesBiomechanical studiesClinical interventionsExperimental findingsMicrostructureAn Introduction to Biomechanics, Solids and Fluids, Analysis and Design
Humphrey J, O’Rourke S. An Introduction to Biomechanics, Solids and Fluids, Analysis and Design. 2025 DOI: 10.1007/978-3-031-75383-1.Peer-Reviewed Original Research
2024
Transcriptional regulation of postnatal aortic development
Weiss D, Yeung N, Ramachandra A, Humphrey J. Transcriptional regulation of postnatal aortic development. Cells And Development 2024, 180: 203971. PMID: 39426523, PMCID: PMC11634634, DOI: 10.1016/j.cdev.2024.203971.Peer-Reviewed Original ResearchMultiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling
Paukner D, Humphrey J, Cyron C. Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling. Biomechanics And Modeling In Mechanobiology 2024, 23: 2115-2136. PMID: 39419845, PMCID: PMC11554721, DOI: 10.1007/s10237-024-01884-w.Peer-Reviewed Original ResearchConstrained mixture modelsNonlinear continuum mechanicsSoft biological tissuesChemo-mechanical interactionsSolid mechanicsChemo-mechanical couplingContinuum mechanicsOrdinary differential equationsSignal processingBiological tissuesMixture modelDifferential equationsEquationsSimulate many casesTissue growthOrgan-scaleComputational analysis of heart valve growth and remodeling after the Ross procedure
Middendorp E, Braeu F, Baaijens F, Humphrey J, Cyron C, Loerakker S. Computational analysis of heart valve growth and remodeling after the Ross procedure. Biomechanics And Modeling In Mechanobiology 2024, 23: 1889-1907. PMID: 39269523, PMCID: PMC11554944, DOI: 10.1007/s10237-024-01874-y.Peer-Reviewed Original ResearchRoss procedureBlood pressure controlRoot dilatationHomogeneous mixture modelPatient's own pulmonary valveMechanical homeostasisPressure controlAortic heart valvesPublished clinical studiesConstrained mixture modelsHemodynamic environmentPulmonary autograftPulmonary valveLeaflet elongationPressure conditionsClinical studiesG&RHemodynamic loadTissue compositionValve growthTissue depositionMixture modelDilatationHeart valvesAutograftMechanisms of aortic dissection: From pathological changes to experimental and in silico models
Rolf-Pissarczyk M, Schussnig R, Fries T, Fleischmann D, Elefteriades J, Humphrey J, Holzapfel G. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. Progress In Materials Science 2024, 150: 101363. PMID: 39830801, PMCID: PMC11737592, DOI: 10.1016/j.pmatsci.2024.101363.Peer-Reviewed Original ResearchAT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice
Cavinato C, Spronck B, Caulk A, Murtada S, Humphrey J. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. Journal Of The Royal Society Interface 2024, 21: 20240110. PMID: 39192727, PMCID: PMC11350382, DOI: 10.1098/rsif.2024.0110.Peer-Reviewed Original ResearchConceptsAngiotensin II infusionAT1B receptorsII infusionAngiotensin IIChronic angiotensin II infusionDays of angiotensin II infusionWild-typeAortas of WTSmooth muscle contractilityDescending thoracic aortaAngiotensin II signalingInflammatory cell responseRenin-angiotensin systemRegulating blood pressureAngII infusionAortic remodelingCell biological changesImmunohistological changesIndependent of sexMuscle contractilityMale miceMouse modelAbdominal aortaArterial remodelingBlood pressure
Academic Achievements & Community Involvement
News
News
- May 12, 2023
Targeting Fibronectin-integrin α5 Signaling in Marfan Syndrome
- April 02, 2020
Why do aortic aneurysms form? Yale-led team finds the reason
- June 14, 2018
New university report recommends science priorities for the decade ahead
- February 12, 2013
Jay Humphrey named to the inaugural John C. Malone Professorship