2022
Benchmarking automated cell type annotation tools for single-cell ATAC-seq data
Wang Y, Sun X, Zhao H. Benchmarking automated cell type annotation tools for single-cell ATAC-seq data. Frontiers In Genetics 2022, 13: 1063233. PMID: 36583014, PMCID: PMC9792779, DOI: 10.3389/fgene.2022.1063233.Peer-Reviewed Original ResearchCell type annotationScATAC-seq dataScRNA-seq dataScATAC-seqCell typesSingle-cell ATAC-seq dataAvailable single-cell datasetsRegulatory genomic regionsScRNA-seq data setsSingle-cell datasetsATAC-seq dataNovel cell typesSimilar cell typesSeurat v3Genomic regionsSequencing depthComplex tissuesDeep annotationAnnotationCellular compositionHuman tissuesType annotationsAnnotation toolAnnotation methodLabel transfer
2015
A Statistical Framework to Predict Functional Non-Coding Regions in the Human Genome Through Integrated Analysis of Annotation Data
Lu Q, Hu Y, Sun J, Cheng Y, Cheung KH, Zhao H. A Statistical Framework to Predict Functional Non-Coding Regions in the Human Genome Through Integrated Analysis of Annotation Data. Scientific Reports 2015, 5: 10576. PMID: 26015273, PMCID: PMC4444969, DOI: 10.1038/srep10576.Peer-Reviewed Original ResearchConceptsHuman genomeFunctional regionsStatistical frameworkAnnotation dataFunctional annotation dataWhole-genome annotationNon-coding regionsGenomic conservationHigh-throughput experimentsENCODE projectExperimental annotationsGenomeUnsupervised statistical learningFunctional potentialHuman geneticsStatistical learningComputational predictionsIntegrated analysisAnnotationAnnotation methodDiverse typesPowerful toolGeneticsMajor goalWeb server
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply