Featured Publications
Maturation of germinal center B cells after influenza virus vaccination in humans
McIntire K, Meng H, Lin T, Kim W, Moore N, Han J, McMahon M, Wang M, Malladi S, Mohammed B, Zhou J, Schmitz A, Hoehn K, Carreño J, Yellin T, Suessen T, Middleton W, Teefey S, Presti R, Krammer F, Turner J, Ward A, Wilson I, Kleinstein S, Ellebedy A. Maturation of germinal center B cells after influenza virus vaccination in humans. Journal Of Experimental Medicine 2024, 221: e20240668. PMID: 38935072, PMCID: PMC11211068, DOI: 10.1084/jem.20240668.Peer-Reviewed Original ResearchConceptsB cellsInfluenza vaccineGerminal centersAntigen-specific GC B cellsResponse to seasonal influenza vaccinationLong-lived bone marrow plasma cellsResponse to influenza vaccinationBone marrow plasma cellsGerminal center B cellsGC B cell clonesInfluenza virus vaccineMaturation of B cellsMarrow plasma cellsSeasonal influenza vaccineMemory B cellsHemagglutinin (HAB cell clonesGC B cellsInfluenza hemagglutinin (HAH5 HANeedle aspirationLymphoid structuresLymph nodesPlasma cellsGC reaction
2025
A single-cell atlas of circulating immune cells over the first 2 months of age in extremely premature infants
Olaloye O, Gu W, Gehlhaar A, Sabuwala B, Eke C, Li Y, Kehoe T, Farmer R, Gabernet G, Lucas C, Tsang J, Lakhani S, Taylor S, Tseng G, Kleinstein S, Konnikova L. A single-cell atlas of circulating immune cells over the first 2 months of age in extremely premature infants. Science Translational Medicine 2025, 17: eadr0942. PMID: 40043141, DOI: 10.1126/scitranslmed.adr0942.Peer-Reviewed Original ResearchConceptsExtremely premature infantsFull-term infantsT cellsMonths of lifePremature infantsImmune cellsMemory CD4<sup>+</sup> T cellsCD4<sup>+</sup> T cellsMemory-like T cellsAnalysis of immune cellsNaive CD4<sup>+</sup>Peripheral T cell developmentWeeks of gestationCord blood samplesNatural killer cellsT helper 1B cell receptor sequencesT cell developmentCycling T cellsMonths of ageSingle-cell suspensionsAmount of bloodSusceptibility to infectionCD4<sup>+</sup>Killer cellsHost-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients
Pickering H, Schaenman J, Phan H, Maguire C, Tsitsiklis A, Rouphael N, Higuita N, Atkinson M, Brakenridge S, Fung M, Messer W, Salehi-rad R, Altman M, Becker P, Bosinger S, Eckalbar W, Hoch A, Doni Jayavelu N, Kim-Schulze S, Jenkins M, Kleinstein S, Krammer F, Maecker H, Ozonoff A, Diray-Arce J, Shaw A, Baden L, Levy O, Reed E, Langelier C. Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients. Nature Communications 2025, 16: 586. PMID: 39794319, PMCID: PMC11723965, DOI: 10.1038/s41467-025-55823-z.Peer-Reviewed Original ResearchConceptsSolid organ transplant recipientsOrgan transplant recipientsTransplant recipientsInduction of pro-inflammatory genesSenescent T cellsTransitional B cellsImpaired viral clearanceImmune response to infectionAnti-spike IgG levelsNon-transplanted controlsFeatures of COVID-19Innate immune signaling pathwaysResponse to infectionPro-inflammatory genesSerum chemokinesViral clearanceImmune dysregulationT cellsImmune signaling pathwaysB cellsImmune featuresSex-matchedIgG levelsSevere diseaseTransplantation
2024
Integrated longitudinal multiomics study identifies immune programs associated with acute COVID-19 severity and mortality
Gygi J, Maguire C, Patel R, Shinde P, Konstorum A, Shannon C, Xu L, Hoch A, Jayavelu N, Haddad E, Network I, Reed E, Kraft M, McComsey G, Metcalf J, Ozonoff A, Esserman D, Cairns C, Rouphael N, Bosinger S, Kim-Schulze S, Krammer F, Rosen L, van Bakel H, Wilson M, Eckalbar W, Maecker H, Langelier C, Steen H, Altman M, Montgomery R, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen K, Fragiadakis G, Becker P, Sekaly R, Ehrlich L, Fourati S, Peters B, Kleinstein S, Guan L. Integrated longitudinal multiomics study identifies immune programs associated with acute COVID-19 severity and mortality. Journal Of Clinical Investigation 2024, 134: e176640. PMID: 38690733, PMCID: PMC11060740, DOI: 10.1172/jci176640.Peer-Reviewed Original ResearchConceptsClinical outcomesImmune cascadeElevated levels of inflammatory cytokinesDisease severityLevels of inflammatory cytokinesFormation of neutrophil extracellular trapsAcute COVID-19 severityCritically ill patientsNeutrophil extracellular trapsDevelopment of therapiesCOVID-19 cohortCOVID-19 severityViral clearanceImmunosuppressive metabolitesDeep immunophenotypingMultiomic modelIFN-stimulated genesImmunophenotypic assessmentB cellsDisease courseEarly upregulationInflammatory cytokinesDisease progressionIFN inhibitorsExtracellular trapsHost-microbe multiomic profiling reveals age-dependent immune dysregulation associated with COVID-19 immunopathology
Phan H, Tsitsiklis A, Maguire C, Haddad E, Becker P, Kim-Schulze S, Lee B, Chen J, Hoch A, Pickering H, van Zalm P, Altman M, Augustine A, Calfee C, Bosinger S, Cairns C, Eckalbar W, Guan L, Jayavelu N, Kleinstein S, Krammer F, Maecker H, Ozonoff A, Peters B, Rouphael N, Montgomery R, Reed E, Schaenman J, Steen H, Levy O, Diray-Arce J, Langelier C, Erle D, Hendrickson C, Kangelaris K, Nguyen V, Lee D, Chak S, Ghale R, Gonzalez A, Jauregui A, Leroux C, Altamirano L, Rashid A, Willmore A, Woodruff P, Krummel M, Carrillo S, Ward A, Patel R, Wilson M, Dandekar R, Alvarenga B, Rajan J, Schroeder A, Fragiadakis G, Mick E, Guerrero Y, Love C, Maliskova L, Adkisson M, Ehrlich L, Melamed E, Rousseau J, Hurley K, Geltman J, Siles N, Rogers J, Kutzler M, Bernui M, Cusimano G, Connors J, Woloszczuk K, Joyner D, Edwards C, Lin E, Melnyk N, Powell D, Kim J, Goonewardene I, Simmons B, Smith C, Martens M, Croen B, Semenza N, Bell M, Furukawa S, McLin R, Tegos G, Rogowski B, Mege N, Ulring K, Holland S, Rosen L, Lee S, Vaysman T, Fernandez-Sesma A, Simon V, Van Bakel H, Gonzalez-Reiche A, Qi J, Carreño J, Singh G, Raskin A, Tcheou J, Khalil Z, van de Guchte A, Farrugia K, Khan Z, Kelly G, Srivastava K, Eaker L, BermĂșdez GonzĂĄlez M, Mulder L, Beach K, Fatou B, Smolen K, Viode A, van Haren S, Jha M, Kho A, Milliren C, Chang A, McEnaney K, Barton B, Lentucci C, Murphy M, Saluvan M, Shaheen T, Liu S, Syphurs C, Albert M, Hayati A, Bryant R, Abraham J, Salehi-Rad R, Rivera A, Sen S, Elashoff D, Ward D, Presnell S, Kohr B, Arnett A, Boddapati A, Tharp G, Pellegrini K, Johnson B, Panganiban B, Huerta C, Anderson E, Samaha H, Sevransky J, Bristow L, Beagle E, Cowan D, Hamilton S, Hodder T, Esserman D, Brito A, Rothman J, Grubaugh N, Ko A, Hafler D, Shaw A, Gygi J, Pawar S, Konstorum A, Chen E, Cotsapas C, Wang X, Xu L, Dela Cruz C, Iwasaki A, Mohanty S, Nelson A, Zhao Y, Farhadian S, Asashima H, Pulendran B, Nadeau R, Rosenberg-Hasson Y, Leipold M, Sigal N, Rogers A, Fernandez A, Manohar M, Do E, Chang I, Vita R, Westendorf K, Corry D, Kheradmand F, Song L, Nelson E, Baden L, Mendez K, Lasky-Su J, Tong A, Rooks R, Sekaly R, Fourati S, McComsey G, Harris P, Sieg S, Ribeiro S, Overton J, Rahman A, Hutton S, Michelotti G, Wong K, Seyfert-Margolis V, Metcalf J, Agudelo Higuita N, Sinko L, Booth J, Messer W, Hough C, Siegel S, Sullivan P, Lu Z, Kraft M, Bime C, Mosier J, Erickson H, Schunk R, Kimura H, Conway M, Atkinson M, Brakenridge S, Ungaro R, Manning B, Oberhaus J, Guirgis F, Borresen B, Anderson M. Host-microbe multiomic profiling reveals age-dependent immune dysregulation associated with COVID-19 immunopathology. Science Translational Medicine 2024, 16: eadj5154. PMID: 38630846, DOI: 10.1126/scitranslmed.adj5154.Peer-Reviewed Original ResearchConceptsPro-inflammatory genesViral clearanceUpper airwayImmune signaling pathwaysInduction of pro-inflammatory genesBiomarkers of disease severityDelayed viral clearanceImpaired viral clearanceSevere coronavirus disease 2019B cell populationsAge-dependent up-regulationExpression of pro-inflammatory genesHost immune responseSignaling pathwayType I interferon gene expressionCOVID-19 immunopathologyInnate immune signaling pathwaysSerum chemokinesAge-dependent impairmentNaive TMulticenter cohortNasal transcriptomeAcute respiratory syndrome coronavirus 2Monocyte populationsSerum protein profiles
2023
Platelet response to influenza vaccination reflects effects of aging
Konstorum A, Mohanty S, Zhao Y, Melillo A, Vander Wyk B, Nelson A, Tsang S, Blevins T, Belshe R, Chawla D, Rondina M, Gill T, Montgomery R, Allore H, Kleinstein S, Shaw A. Platelet response to influenza vaccination reflects effects of aging. Aging Cell 2023, 22: e13749. PMID: 36656789, PMCID: PMC9924941, DOI: 10.1111/acel.13749.Peer-Reviewed Original ResearchConceptsCommunity-dwelling older adultsPlatelet activationOlder adultsInfluenza vaccinationAge-associated chronic inflammationInfluence platelet functionRNA expressionPro-inflammatory diseasesAge-associated increasePlatelet activation pathwaysAge-associated differencesActivation pathwayPlatelet transcriptomeGeriatric conditionsChronic inflammationImmune responsePlatelet functionPlatelet responseSNF residentsVaccinationActivation responseYoung individualsProtein levelsAdultsYounger participants
2022
Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses
Hagan T, Gerritsen B, Tomalin LE, Fourati S, MulÚ MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, Dunn P, Lee A, Levy O, Gottardo R, Sarwal M, Tsang J, Suårez-Fariñas M, Sékaly R, Kleinstein S, Pulendran B. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nature Immunology 2022, 23: 1788-1798. PMID: 36316475, PMCID: PMC9869360, DOI: 10.1038/s41590-022-01328-6.Peer-Reviewed Original ResearchConceptsAntibody responseDay 1Vaccine-induced antibodiesYellow fever vaccineHuman immune responseMechanisms of immunityB cell activationTranscriptional atlasFever vaccineDifferent vaccinesSystems vaccinologyImmune responseMost vaccinesDay 7Cell activationInnate immunityVaccineVaccinationImmunityCommon predictorsMolecular signaturesResponsePlasmablastsInterferonAntibodies
2021
Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes.
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. The Journal Of Immunology 2021, 207: 2005-2014. PMID: 34544801, PMCID: PMC8492536, DOI: 10.4049/jimmunol.2100225.Peer-Reviewed Original ResearchConceptsMyasthenia gravisB-cell-mediated autoimmune diseasesBCR repertoireCell-mediated autoimmune diseaseTotal BCR repertoireTotal circulating IgGSubset of patientsB cell repertoireElevated NGene segment usageMG subtypesAutoimmune disordersAutoimmune diseasesHealthy donorsCell repertoireDisease subtypesDistinct subtypesReceptor repertoireAdaptive immune receptor repertoiresV regionsAutoantigen bindingPatientsSegment usageSubtypesImmune receptor repertoiresSingle cell immunophenotyping of the skin lesion erythema migrans Identifies IgM memory B cells
Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single cell immunophenotyping of the skin lesion erythema migrans Identifies IgM memory B cells. JCI Insight 2021, 6: e148035. PMID: 34061047, PMCID: PMC8262471, DOI: 10.1172/jci.insight.148035.Peer-Reviewed Original ResearchConceptsMemory B cellsErythema migransB cellsEM lesionsIgM memory B cellsLyme diseaseB-cell receptor sequencingSkin infection siteCell receptor sequencingEarly Lyme diseaseLocal antigen presentationSkin immune responsesB cell populationsSingle-cell immunophenotypingMHC class II genesUninvolved skinImmune cellsSpirochetal infectionAntigen presentationCell immunophenotypingT cellsImmune responseIsotype usageAntibody productionInitial signsSex-Biased Aging Effects on Ig Somatic Hypermutation Targeting
Cui A, Chawla DG, Kleinstein SH. Sex-Biased Aging Effects on Ig Somatic Hypermutation Targeting. The Journal Of Immunology 2021, 206: 101-108. PMID: 33288546, PMCID: PMC8582005, DOI: 10.4049/jimmunol.2000576.Peer-Reviewed Original ResearchConceptsOlder individualsDNA mismatch repair genesSex groupsObserved clinical differencesMismatch repair genesB cell IgDecreased expression levelDNA repair activityImmunologic responseClinical differencesAb responsesFemale human subjectsOld maleAged individualsImpaired levelDifferent agesYounger counterpartsPhase ILargest fold changeYoung individualsError-prone DNA repair activityExpression levelsHuman subjectsMutation patternsRepair activity
2020
Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis
Jiang R, Hoehn KB, Lee CS, Pham MC, Homer RJ, Detterbeck FC, Aban I, Jacobson L, Vincent A, Nowak RJ, Kaminski HJ, Kleinstein SH, O'Connor KC. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 30649-30660. PMID: 33199596, PMCID: PMC7720237, DOI: 10.1073/pnas.2007206117.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAutoantibodiesBiomarkersB-LymphocytesClonal EvolutionClonal Selection, Antigen-MediatedDisease SusceptibilityFemaleHumansLymphocyte CountMaleMiddle AgedModels, BiologicalMyasthenia GravisRadioimmunoassayReceptors, CholinergicThymectomyThymus GlandV(D)J RecombinationYoung AdultConceptsB cell clonesMyasthenia gravisB cell repertoireB cellsCell clonesPlasma cellsCell repertoireAdditional immunosuppressive treatmentDiminished clinical responseThymic lymphofollicular hyperplasiaComplete stable remissionMajority of patientsAntigen-experienced B cellsRandomized clinical trialsClinical symptom measuresAChR autoantibodiesImmunosuppressive treatmentSteroid doseAutoantibody titersMG thymusClinical responseStable remissionClinical scoresAutoimmune diseasesClinical trialsHuman germinal centres engage memory and naive B cells after influenza vaccination
Turner JS, Zhou JQ, Han J, Schmitz AJ, Rizk AA, Alsoussi WB, Lei T, Amor M, McIntire KM, Meade P, Strohmeier S, Brent RI, Richey ST, Haile A, Yang YR, Klebert MK, Suessen T, Teefey S, Presti RM, Krammer F, Kleinstein SH, Ward AB, Ellebedy AH. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 2020, 586: 127-132. PMID: 32866963, PMCID: PMC7566073, DOI: 10.1038/s41586-020-2711-0.Peer-Reviewed Original ResearchConceptsB cell clonesInfluenza vaccinationGerminal center B cellsB cellsGerminal center reactionCell clonesLymph nodesMonoclonal antibodiesPre-existing memory B cellsGerminal center B cell responsesStrain-specific monoclonal antibodiesCenter reactionUltrasound-guided fine-needle aspirationMajor public health threatEarly plasmablast responsesInfluenza virus vaccinationSeasonal influenza vaccinationCross-reactive monoclonal antibodiesB cell responsesMemory B cellsB-cell originFine-needle aspirationNaive B cellsPublic health threatHuman germinal centreSeasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults
Avey S, Mohanty S, Chawla DG, Meng H, Bandaranayake T, Ueda I, Zapata HJ, Park K, Blevins TP, Tsang S, Belshe RB, Kaech SM, Shaw AC, Kleinstein SH. Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults. The Journal Of Immunology 2020, 204: 1661-1673. PMID: 32060136, PMCID: PMC7755271, DOI: 10.4049/jimmunol.1900922.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAgedAgingAntibodies, ViralCohort StudiesFemaleGene Expression ProfilingHemagglutination Inhibition TestsHumansImmunogenicity, VaccineInfluenza A virusInfluenza VaccinesInfluenza, HumanMaleNK Cell Lectin-Like Receptor Subfamily BOligonucleotide Array Sequence AnalysisSeasonsTranscriptomeVaccinationVaccines, InactivatedYoung AdultConceptsVaccine-induced Ab responsesOlder adultsInfluenza vaccinationDays postvaccinationInfluenza vaccineAb responsesMore effective influenza vaccinesImportant public health toolInactivated influenza vaccinationSeasonal influenza vaccineVaccine-induced immunityEffective influenza vaccinesMolecular signaturesEffects of immunosenescencePublic health toolImmune signaturesVaccination seasonVaccine responsesVaccine compositionSubset of individualsAge groupsHealth toolsSingle age groupAdultsPostvaccinationSingle cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures
Zhao Y, Amodio M, Vander Wyk B, Gerritsen B, Kumar MM, van Dijk D, Moon K, Wang X, Malawista A, Richards MM, Cahill ME, Desai A, Sivadasan J, Venkataswamy MM, Ravi V, Fikrig E, Kumar P, Kleinstein SH, Krishnaswamy S, Montgomery RR. Single cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures. PLOS Neglected Tropical Diseases 2020, 14: e0008112. PMID: 32150565, PMCID: PMC7082063, DOI: 10.1371/journal.pntd.0008112.Peer-Reviewed Original ResearchConceptsZika virusCell subsetsDengue virusConcurrent dengue infectionInnate cell responsesInnate immune signaturesVirus-infected individualsDivergent clinical outcomesMosquito-borne human pathogenIntact immune responsePre-existing infectionInnate cell typesSingle-cell immune profilingPublic health importanceCell typesImmune signaturesVirus patientsWest Nile virusAcute patientsClinical outcomesImmune profilingDengue infectionImmune statusFunctional statusImmune cells
2019
Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation
Austin JW, Buckner CM, Kardava L, Wang W, Zhang X, Melson VA, Swanson RG, Martins AJ, Zhou JQ, Hoehn KB, Fisk JN, Dimopoulos Y, Chassiakos A, O'Dell S, Smelkinson MG, Seamon CA, Kwan RW, Sneller MC, Pittaluga S, Doria-Rose NA, McDermott A, Li Y, Chun TW, Kleinstein SH, Tsang JS, Petrovas C, Moir S. Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Science Translational Medicine 2019, 11 PMID: 31776286, PMCID: PMC7479651, DOI: 10.1126/scitranslmed.aax0904.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, NeutralizingAntibody AffinityAntigens, CD19B-LymphocytesCytokinesFemaleGerminal CenterHIV InfectionsHumansImmunologic MemoryLymph NodesMaleMiddle AgedMutation RatePhenotypeReceptors, Antigen, B-CellT-Box Domain ProteinsT-Lymphocytes, Helper-InducerTranscriptomeYoung AdultConceptsHIV-specific B cellsT-betGC B cellsGerminal centersB cellsLymph nodesPoor affinity maturationChronic immune activationMemory B cell compartmentAntibody-mediated immunityChronic infectious diseaseOptimal antibody responseB cell compartmentChronic human infectionsB cell receptorHIV viremiaImmunologic outcomesHIV infectionViremic individualsChronic viremiaImmune activationPeripheral bloodProtective antibodiesAntibody responseCD19Phenotypic and Ig Repertoire Analyses Indicate a Common Origin of IgDâCD27â Double Negative B Cells in Healthy Individuals and Multiple Sclerosis Patients
Fraussen J, Marquez S, Takata K, Beckers L, Montes Diaz G, Zografou C, Van Wijmeersch B, Villar LM, O'Connor KC, Kleinstein SH, Somers V. Phenotypic and Ig Repertoire Analyses Indicate a Common Origin of IgDâCD27â Double Negative B Cells in Healthy Individuals and Multiple Sclerosis Patients. The Journal Of Immunology 2019, 203: 1650-1664. PMID: 31391234, PMCID: PMC6736705, DOI: 10.4049/jimmunol.1801236.Peer-Reviewed Original ResearchConceptsDN B cellsDouble-negative B cellsMultiple sclerosis patientsMS patientsNegative B cellsHealthy controlsClass-switched memoryB cellsAdaptive immune receptor repertoire sequencingSclerosis patientsRepertoire sequencingFrequency of CD95Naive B cellsUnique differentiation pathwayLow CD5Proinflammatory characteristicsImmune agingCD38 expressionHealthy individualsPatientsFlow cytometryLow mutation loadCD27Repertoire analysisMaturation stateEarly B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production
Cotzomi E, Stathopoulos P, Lee CS, Ritchie AM, Soltys JN, Delmotte FR, Oe T, Sng J, Jiang R, K A, Vander Heiden JA, Kleinstein SH, Levy M, Bennett JL, Meffre E, OâConnor K. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 2019, 142: 1598-1615. PMID: 31056665, PMCID: PMC6536857, DOI: 10.1093/brain/awz106.Peer-Reviewed Original ResearchConceptsNeuromyelitis optica spectrum disorderB cell tolerance checkpointsNMOSD patientsNaĂŻve B cellsAQP4 autoantibodiesTolerance checkpointsHealthy donorsB cellsEarly B cell tolerance checkpointsPeripheral B cell tolerance checkpointsMature naĂŻve B cellsB cell tolerance defectsSeropositive NMOSD patientsOptica spectrum disorderRare autoimmune disorderNaĂŻve B-cell compartmentB cell compartmentB cell populationsAquaporin-4 water channelsPathogenic autoantibodiesAutoantibody productionOptic nerveAutoimmune disordersSevere inflammationSpinal cord
2017
Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing
Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, Barohn RJ, Dimachkie MM, Ciafaloni E, Broering TJ, Vigneault F, Nowak RJ, Kleinstein SH, O'Connor KC. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. The Journal Of Immunology 2017, 198: 1460-1473. PMID: 28087666, PMCID: PMC5296243, DOI: 10.4049/jimmunol.1601415.Peer-Reviewed Original ResearchConceptsDeep sequencing
2016
Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-Îł, and GM-CSF and Diminished IL-10 Production
Cao Y, Amezquita RA, Kleinstein SH, Stathopoulos P, Nowak RJ, O'Connor KC. Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-Îł, and GM-CSF and Diminished IL-10 Production. The Journal Of Immunology 2016, 196: 2075-2084. PMID: 26826242, PMCID: PMC4761502, DOI: 10.4049/jimmunol.1501339.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAutoimmunityCD4-Positive T-LymphocytesCell SeparationCytokinesEnzyme-Linked Immunosorbent AssayFemaleGranulocyte-Macrophage Colony-Stimulating FactorHumansInterferon-gammaInterleukin-10Interleukin-17MaleMiddle AgedMyasthenia GravisPhenotypePolymerase Chain ReactionT-Lymphocyte SubsetsConceptsAutoreactive T cellsT cell compartmentHealthy control subjectsMyasthenia gravisT cellsMG patientsIL-17Control subjectsT cell librariesB cellsGM-CSFMemory T cell compartmentElevated IL-17Prototypical autoimmune diseaseIL-10 productionMemory T cellsCell compartmentIL-10 expressionB cell compartmentPathogenic phenotypeMG cohortPathogenic autoantibodiesAutoimmune responseClinical manifestationsProinflammatory phenotype
2015
Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing
Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JN, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integrative Biology 2015, 7: 1587-1597. PMID: 26481611, PMCID: PMC4754972, DOI: 10.1039/c5ib00169b.Peer-Reviewed Original ResearchConceptsHumoral responseNext-generation sequencingB cellsWest Nile virus infectionSevere neurological illnessMemory B cellsAntibody-secreting cellsCohort of subjectsWNV-specific antibodiesHuman B cellsMosquito-borne diseaseWest Nile virusAnamnestic responseAntibody responseAvailable treatmentsClinical severityAntibody isotypesNeurological illnessVaccine studiesVirus infectionGeneration sequencingInfectious diseasesPrevious exposureTherapeutic antibodiesAntibodies
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply