2021
Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function
Kumar M, Molkentine D, Molkentine J, Bridges K, Xie T, Yang L, Hefner A, Gao M, Bahri R, Dhawan A, Frederick MJ, Seth S, Abdelhakiem M, Beadle BM, Johnson F, Wang J, Shen L, Heffernan T, Sheth A, Ferris RL, Myers JN, Pickering CR, Skinner HD. Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function. Nature Communications 2021, 12: 6340. PMID: 34732714, PMCID: PMC8566594, DOI: 10.1038/s41467-021-26570-8.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsApoptosisBiomarkers, TumorBRCA1 ProteinCell Line, TumorCREB-Binding ProteinE1A-Associated p300 ProteinGain of Function MutationHistone AcetyltransferasesHomologous RecombinationHumansMaleMice, NudeMutationNeoplasmsProtein DomainsSquamous Cell Carcinoma of Head and NeckXenograft Model Antitumor AssaysLow doses of methylnaltrexone inhibits head and neck squamous cell carcinoma growth in vitro and in vivo by acting on the mu‐opioid receptor
Gorur A, Patiño M, Shi T, Corrales G, Takahashi H, Rangel R, Gleber‐Netto F, Pickering C, Myers JN, Cata JP. Low doses of methylnaltrexone inhibits head and neck squamous cell carcinoma growth in vitro and in vivo by acting on the mu‐opioid receptor. Journal Of Cellular Physiology 2021, 236: 7698-7710. PMID: 34038587, DOI: 10.1002/jcp.30421.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsCell Line, TumorCell MovementCell ProliferationEpithelial-Mesenchymal TransitionHead and Neck NeoplasmsHumansMaleMice, Inbred C57BLMice, NudeNaltrexoneNarcotic AntagonistsNeoplasm InvasivenessQuaternary Ammonium CompoundsReceptors, Opioid, muSignal TransductionSquamous Cell Carcinoma of Head and NeckTumor BurdenXenograft Model Antitumor AssaysConceptsMu-opioid receptorsEffects of methylnaltrexoneHNSCC cell linesTumor growthCell linesNeck squamous cell carcinoma growthNeck squamous cell carcinomaDifferent HNSCC cell linesClonogenic activitySquamous cell carcinoma growthSquamous cell carcinomaLung cancer cell linesCyclic adenosine monophosphate levelsTumor-bearing miceAggressive cell behaviorEpithelial-mesenchymal transitionAdenosine monophosphate levelsCancer cell linesCell carcinomaMethylnaltrexoneCarcinoma growthTherapeutic targetLow dosesFaDu cellsMetastasis formationMu-opioid receptor activation promotes in vitro and in vivo tumor growth in head and neck squamous cell carcinoma
Gorur A, Patiño M, Takahashi H, Corrales G, Pickering CR, Gleber-Netto FO, Myers JN, Cata JP. Mu-opioid receptor activation promotes in vitro and in vivo tumor growth in head and neck squamous cell carcinoma. Life Sciences 2021, 278: 119541. PMID: 33930368, DOI: 10.1016/j.lfs.2021.119541.Peer-Reviewed Original ResearchConceptsMu-opioid receptorsMOR activationTumor growthSelective MOR agonist DAMGOMu-opioid receptor activationNeck squamous cell carcinomaSquamous cell carcinoma progressionNeck squamous cell carcinoma progressionMOR agonist DAMGOSquamous cell carcinomaTumorigenesis of HNSCCPotential therapeutic targetVivo tumor growthAgonist DAMGOCell carcinomaSaline 0.9MOR agonistsTherapeutic targetCarcinoma progressionReceptor activationHNSCCVivo studiesColony formationCell linesMe-PheTargeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis
Knitz MW, Bickett TE, Darragh LB, Oweida AJ, Bhatia S, Van Court B, Bhuvane S, Piper M, Gadwa J, Mueller AC, Nguyen D, Nangia V, Osborne DG, Bai X, Ferrara SE, Boss MK, Goodspeed A, Burchill MA, Tamburini BAJ, Chan ED, Pickering CR, Clambey ET, Karam SD. Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. Journal For ImmunoTherapy Of Cancer 2021, 9: e001955. PMID: 33883256, PMCID: PMC8061827, DOI: 10.1136/jitc-2020-001955.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, ImmunologicalBasic-Leucine Zipper Transcription FactorsCell Line, TumorCombined Modality TherapyDendritic CellsDrug Resistance, NeoplasmHead and Neck NeoplasmsImmune Checkpoint InhibitorsImmunotherapyInterleukin-2 Receptor alpha SubunitLymphocyte DepletionMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutPhenotypeRadiation Dose HypofractionationRadiation ToleranceRepressor ProteinsSquamous Cell Carcinoma of Head and NeckT-Lymphocytes, RegulatoryTumor BurdenTumor MicroenvironmentTumor Necrosis Factor Receptor Superfamily, Member 9ConceptsCombination radiation therapyRadiation therapyDendritic cellsLymph nodesMouse modelRadioresistant tumorsRegulatory T-cell depletionT cell effector responsesTumor-draining lymph nodesNeck squamous cell carcinomaOral squamous cell carcinoma tumorsT cell-dependent responsesSquamous cell carcinoma tumorsAnti-CD137 treatmentDC activation statusGy x 5Higher Treg numbersPlasticity of TregsAdoptive transfer studiesT-cell depletionSquamous cell carcinomaCell-dependent responsesOrthotopic mouse modelTumor necrosis factorαNew therapeutic opportunities
2020
Identifying predictors of HPV‐related head and neck squamous cell carcinoma progression and survival through patient‐derived models
Facompre ND, Rajagopalan P, Sahu V, Pearson AT, Montone KT, James CD, Gleber‐Netto F, Weinstein GS, Jalaly J, Lin A, Rustgi AK, Nakagawa H, Califano JA, Pickering CR, White EA, Windle BE, Morgan IM, Cohen RB, Gimotty PA, Basu D. Identifying predictors of HPV‐related head and neck squamous cell carcinoma progression and survival through patient‐derived models. International Journal Of Cancer 2020, 147: 3236-3249. PMID: 32478869, PMCID: PMC7554059, DOI: 10.1002/ijc.33125.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsClass I Phosphatidylinositol 3-KinasesErbB ReceptorsExome SequencingFemaleGenetic Association StudiesHead and Neck NeoplasmsHumansMaleMiceMutationNeoplasm TransplantationPapillomaviridaePapillomavirus E7 ProteinsPapillomavirus InfectionsPatient-Specific ModelingPrognosisSquamous Cell Carcinoma of Head and NeckSurvival AnalysisTNF Receptor-Associated Factor 3ConceptsPatient-derived xenograftsTumor mutational burdenPreclinical modelsMutational burdenHuman papilloma virus-related headHigh tumor mutational burdenNeck squamous cell carcinomaSquamous cell carcinoma progressionNeck squamous cell carcinoma progressionInadequate preclinical modelsSquamous cell carcinomaDisease recurrence riskPatient-derived modelsLow engraftment rateWhole-exome sequencingViral oncogene functionPrognostic alterationsLocal progressionHPV- patientsCancer Genome AtlasCell carcinomaHPV casesPIK3CA mutationsEngraftment rateLethal outcomeLoss of p53 drives neuron reprogramming in head and neck cancer
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA, Cai Y, Wang R, Knutsen E, Shimizu M, Ivan C, Rao X, Wang J, Silverman DA, Tam S, Zhao M, Caulin C, Zinger A, Tasciotti E, Dougherty PM, El-Naggar A, Calin GA, Myers JN. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020, 578: 449-454. PMID: 32051587, PMCID: PMC9723538, DOI: 10.1038/s41586-020-1996-3.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AntagonistsAdrenergic NeuronsAnimalsCell DivisionCell TransdifferentiationCellular ReprogrammingDisease Models, AnimalDisease ProgressionFemaleHumansMaleMiceMice, Inbred BALB CMicroRNAsMouth NeoplasmsNerve FibersNeuritesReceptors, AdrenergicRetrospective StudiesSensory Receptor CellsTumor MicroenvironmentTumor Suppressor Protein p53Xenograft Model Antitumor AssaysConceptsOral cancerNerve fibersAdrenergic nerve fibersPoor clinical outcomeTrigeminal sensory neuronsLoss of TP53Sensory denervationAdrenergic nervesChemical sympathectomyNerve densitySensory nervesClinical outcomesSolid tumor microenvironmentLoss of p53Neck cancerPharmacological blockadeEndogenous neuronsRetrospective analysisMouse modelSensory neuronsAdrenergic phenotypeAdrenergic receptorsTumor growthTumor progressionTumor microenvironment
2019
PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition
Sambandam V, Frederick MJ, Shen L, Tong P, Rao X, Peng S, Singh R, Mazumdar T, Huang C, Li Q, Pickering CR, Myers JN, Wang J, Johnson FM. PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition. Clinical Cancer Research 2019, 25: 3329-3340. PMID: 30770351, PMCID: PMC6548600, DOI: 10.1158/1078-0432.ccr-18-3276.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell Line, TumorCell ProliferationCRISPR-Cas SystemsDisease Models, AnimalDose-Response Relationship, DrugGene EditingGene ExpressionGene Knockdown TechniquesHumansLoss of Function MutationMicePhosphatidylinositol 3-KinasesProtein Kinase InhibitorsPyruvate Dehydrogenase Acetyl-Transferring KinaseReceptor, Notch1Signal TransductionSquamous Cell Carcinoma of Head and NeckTOR Serine-Threonine KinasesConceptsPI3K/mTOR inhibitorPI3K/mTOR inhibitionPI3K/mTOR pathway inhibitorsMTOR pathway inhibitorsHNSCC cell linesMTOR inhibitorsMTOR inhibitionCell linesPathway inhibitorNeck squamous cell carcinomaDrug-sensitive cell linesClinical response ratePI3K/mTOR pathwaySquamous cell carcinomaBiomarkers of responseOrthotopic xenograft modelCell carcinomaTumor sizeXenograft modelHNSCCSingle agentPDK1 overexpressionResponse rateMolecular vulnerabilitiesPharmacogenomic approach
2018
Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants
Kalu NN, Mazumdar T, Peng S, Tong P, Shen L, Wang J, Banerjee U, Myers JN, Pickering CR, Brunell D, Stephan CC, Johnson FM. Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants. Cancer Letters 2018, 431: 64-72. PMID: 29807113, DOI: 10.1016/j.canlet.2018.05.029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArea Under CurveAurora Kinase ABenzamidesBiomarkersCarcinoma, Squamous CellCell CycleCell LineCell ProliferationDNA-Binding ProteinsDrug Evaluation, PreclinicalFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMiceMutationNeoplasm ProteinsNeoplasm TransplantationPapillomaviridaePapillomavirus InfectionsPharmacogeneticsPyrazolesUterine Cervical NeoplasmsConceptsAurora kinase inhibitorsDrug sensitivityWild-type cellsPolo-like kinasesInhibitor-induced apoptosisHigh-throughput drug screensNeck squamous cell carcinomaKinase inhibitorsHPV-negative cell linesSquamous cell carcinomaEffective drug classAurora kinase inhibitionG2-M arrestAurora kinasesHistone deacetylaseAurora inhibitorsCervical cancerTumor sizeCell carcinomaHuman papillomavirusCancer DatabaseDrug classesPharmacogenomic profilingXenograft modelM arrest
2017
Replication Stress Leading to Apoptosis within the S-phase Contributes to Synergism between Vorinostat and AZD1775 in HNSCC Harboring High-Risk TP53 Mutation
Tanaka N, Patel AA, Tang L, Silver NL, Lindemann A, Takahashi H, Jaksik R, Rao X, Kalu NN, Chen TC, Wang J, Frederick MJ, Johnson F, Gleber-Netto FO, Fu S, Kimmel M, Wang J, Hittelman WN, Pickering CR, Myers JN, Osman AA. Replication Stress Leading to Apoptosis within the S-phase Contributes to Synergism between Vorinostat and AZD1775 in HNSCC Harboring High-Risk TP53 Mutation. Clinical Cancer Research 2017, 23: 6541-6554. PMID: 28790110, PMCID: PMC5724758, DOI: 10.1158/1078-0432.ccr-17-0947.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCarcinoma, Squamous CellCell Cycle ProteinsCell Line, TumorCell ProliferationDNA DamageDNA ReplicationDrug SynergismFemaleHead and Neck NeoplasmsHistone Deacetylase InhibitorsHumansHydroxamic AcidsMiceMutationNuclear ProteinsPhosphorylationProtein-Tyrosine KinasesPyrazolesPyrimidinesPyrimidinonesRisk FactorsS PhaseSquamous Cell Carcinoma of Head and NeckTumor Suppressor Protein p53VorinostatConceptsOrthotopic mouse modelHNSCC cellsOral cancerMouse modelNeck squamous cell carcinomaSquamous cell carcinomaCombination of vorinostatProlongs animal survivalHNSCC cell linesClin Cancer ResClonogenic survival assaysAdvanced HNSCCAdvanced headStandard therapyCell carcinomaCure rateEffective therapyClinical investigationCell cycleP53 mutationsTumor growthVorinostatAnimal survivalAZD1775Cancer ResComprehensive Genomic Profiling of Metastatic Squamous Cell Carcinoma of the Anal Canal
Morris V, Rao X, Pickering C, Foo WC, Rashid A, Eterovic K, Kim T, Chen K, Wang J, Shaw K, Eng C. Comprehensive Genomic Profiling of Metastatic Squamous Cell Carcinoma of the Anal Canal. Molecular Cancer Research 2017, 15: 1542-1550. PMID: 28784613, PMCID: PMC5991496, DOI: 10.1158/1541-7786.mcr-17-0060.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAnimalsAnus NeoplasmsCarcinoma, Squamous CellClass I Phosphatidylinositol 3-KinasesDNA-Binding ProteinsExome SequencingFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMiceMiddle AgedMutationNeoplasm MetastasisNeoplasm ProteinsNeoplasm TransplantationPapillomavirus InfectionsPatient-Specific ModelingTumor Suppressor Protein p53ConceptsMetastatic SCCAHuman papillomavirusMutation burdenPatient-derived xenograft modelsAvailable frozen tissueDistinct tumor subpopulationsAnti-EGFR treatmentTumor mutation burdenRare gastrointestinal malignancySquamous cell carcinomaNovel therapeutic approachesComprehensive molecular profilingLow mutation burdenComprehensive genomic characterizationMajority of casesWhole-exome sequencingGene mutation frequencyGastrointestinal malignanciesAdditional patientsAnal canalAnnual incidenceValidation cohortCell carcinomaStandard treatmentPrior infectionMutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors
Zhang M, Singh R, Peng S, Mazumdar T, Sambandam V, Shen L, Tong P, Li L, Kalu NN, Pickering CR, Frederick M, Myers JN, Wang J, Johnson FM. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors. Cancer Letters 2017, 392: 71-82. PMID: 28126323, PMCID: PMC5404895, DOI: 10.1016/j.canlet.2017.01.024.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsApoptosisCarcinoma, Squamous CellCell Cycle ProteinsCell Line, TumorCell ProliferationCheckpoint Kinase 1Checkpoint Kinase 2Dose-Response Relationship, DrugG2 Phase Cell Cycle CheckpointsGenotypeHead and Neck NeoplasmsHumansLIM Domain ProteinsMice, NudeMolecular Targeted TherapyMutationNuclear ProteinsPhenotypeProtein Kinase InhibitorsProtein Serine-Threonine KinasesProtein-Tyrosine KinasesProto-Oncogene ProteinsPteridinesPyrazolesPyrimidinesPyrimidinonesRas ProteinsRNA InterferenceSignal TransductionSmad4 ProteinSquamous Cell Carcinoma of Head and NeckThiophenesTime FactorsTransfectionTumor BurdenUreaXenograft Model Antitumor AssaysConceptsPolo-like kinase 1Cell linesLIM protein AjubaHNSCC cell linesInhibitor-induced apoptosisProtein expressionCell cycle inhibitorsCell cycle arrestKnockdown of PLK1Neck squamous cell carcinomaAjubaExogenous expressionNeck squamous cell carcinoma (HNSCC) tumorsSquamous cell carcinoma tumorsKinase 1HNSCC mouse modelSquamous cell carcinomaSubstrate inhibitionHigher drug dosesPotential candidate biomarkersGenomic alterationsMitotic inhibitorsPLK1 inhibitionSensitive cell linesMutations
2016
Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates
Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S, Charpiot E, Adelmann CH, Ching G, Nguyen TN, Nicholas C, Thomas VD, Migden M, MacFarlane D, Thompson E, Shen J, Takata Y, McNiece K, Polansky MA, Abbas HA, Rajapakshe K, Gower A, Spira A, Covington KR, Xiao W, Gunaratne P, Pickering C, Frederick M, Myers JN, Shen L, Yao H, Su X, Rapini RP, Wheeler DA, Hawk ET, Flores ER, Tsai KY. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nature Communications 2016, 7: 12601. PMID: 27574101, PMCID: PMC5013636, DOI: 10.1038/ncomms12601.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsCarcinogenesisCarcinoma, Squamous CellDisease ProgressionDNA Mutational AnalysisExome SequencingFemaleGene Expression ProfilingGenomicsHigh-Throughput Nucleotide SequencingHumansKeratosis, ActinicMiceMice, HairlessMolecular Targeted TherapyPrecancerous ConditionsSequence Analysis, RNASkinSkin NeoplasmsUltraviolet RaysConceptsCross-species genomic analysisCross-species identificationCross-species analysisKey genomic changesGenomic analysisGenomic changesTranscriptional driversDistinct precancerous lesionsGenomic driversPotential targetSquamous cell carcinoma developmentMolecular similarityActinic keratosisAccessible modelDiverse sitesCutaneous squamous cell carcinomaHuman samplesSquamous cell carcinomaHairless mouse modelProgression sequenceMouse modelCarcinoma developmentCell carcinomaPrecancerous lesionsCommon treatmentHuman epidermal growth factor receptor 2/neu as a novel therapeutic target in sinonasal undifferentiated carcinoma
Takahashi Y, Lee J, Pickering C, Bell D, Jiffar TW, Myers JN, Hanna EY, Kupferman ME. Human epidermal growth factor receptor 2/neu as a novel therapeutic target in sinonasal undifferentiated carcinoma. Head & Neck 2016, 38: e1926-e1934. PMID: 26752332, PMCID: PMC6453572, DOI: 10.1002/hed.24350.Peer-Reviewed Original ResearchConceptsHuman epidermal growth factor receptor 2Sinonasal undifferentiated carcinomaEpidermal growth factor receptor 2Growth factor receptor 2Potential therapeutic targetFactor receptor 2Cell linesGrowth inhibitionProtein expression levelsCell growth inhibitionMethylthiazol tetrazoliumMultimodal therapyHER2 inhibitionUndifferentiated carcinomaNovel therapiesAggressive cancerNew therapiesReceptor 2Therapeutic targetFlank modelClonogenic assayWestern blottingWhole-genome single nucleotide polymorphism (SNP) analysisTherapyERBB2 gene
2015
Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients
Osman AA, Neskey DM, Katsonis P, Patel AA, Ward AM, Hsu TK, Hicks SC, McDonald TO, Ow TJ, Alves MO, Pickering CR, Skinner HD, Zhao M, Sturgis EM, Kies MS, El-Naggar A, Perrone F, Licitra L, Bossi P, Kimmel M, Frederick MJ, Lichtarge O, Myers JN. Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients. Cancer Research 2015, 75: 1205-1215. PMID: 25691460, PMCID: PMC4615655, DOI: 10.1158/0008-5472.can-14-2729.Peer-Reviewed Original ResearchConceptsNeck cancer patientsEvolutionary action scoreCancer patientsTP53 mutationsNeck squamous cell carcinomaSquamous cell carcinomaCisplatin-based therapyPlatinum-based therapySubset of headThird of casesNovel scoring systemSurvival benefitProspective evaluationCell carcinomaPlatinum responsePreclinical modelsTreatment selectionAction scoresScoring systemPatientsHNSCCTherapyCoding variantPredictive responseScores
2014
HRAS mutations and resistance to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in head and neck squamous cell carcinoma cells
Hah JH, Zhao M, Pickering CR, Frederick MJ, Andrews GA, Jasser SA, Fooshee DR, Milas ZL, Galer C, Sano D, William WN, Kim E, Heymach J, Byers LA, Papadimitrakopoulou V, Myers JN. HRAS mutations and resistance to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in head and neck squamous cell carcinoma cells. Head & Neck 2014, 36: 1547-1554. PMID: 24123531, PMCID: PMC4010580, DOI: 10.1002/hed.23499.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCarcinoma, Squamous CellCell Line, TumorCell ProliferationDown-RegulationDrug Resistance, NeoplasmErlotinib HydrochlorideHead and Neck NeoplasmsHumansMiceMolecular Targeted TherapyMutationProtein Kinase InhibitorsProto-Oncogene Proteins p21(ras)QuinazolinesSensitivity and SpecificitySignal TransductionSquamous Cell Carcinoma of Head and NeckTransfectionConceptsShort hairpin RNACell linesHRAS expressionErlotinib sensitivityErlotinib-sensitive cell linesErlotinib-resistant cell linesErlotinib resistanceHRAS mutationsNeck squamous cell carcinoma cellsEpidermal growth factor receptor tyrosine kinase inhibitorsGrowth factor receptor tyrosine kinase inhibitorsEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinibNeck squamous cell carcinoma cell linesSquamous cell carcinoma cellsTyrosine kinase inhibitor erlotinibPanel of headReceptor tyrosine kinase inhibitorsHairpin RNAHNSCC cell linesSquamous cell carcinoma cell linesCell carcinoma cell linesCarcinoma cell linesKinase inhibitor erlotinibTyrosine kinase inhibitorsMutations
2013
Coordinated Targeting of the EGFR Signaling Axis by MicroRNA-27a*
Wu X, Bhayani MK, Dodge CT, Nicoloso MS, Chen Y, Yan X, Adachi M, Thomas L, Galer CE, Jiffar T, Pickering CR, Kupferman ME, Myers JN, Calin GA, Lai SY. Coordinated Targeting of the EGFR Signaling Axis by MicroRNA-27a*. Oncotarget 2013, 4: 1388-1398. PMID: 23963114, PMCID: PMC3824521, DOI: 10.18632/oncotarget.1239.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCarcinoma, Squamous CellCell Growth ProcessesCell Line, TumorCell SurvivalDown-RegulationErbB ReceptorsHead and Neck NeoplasmsHumansMiceMicroRNAsProto-Oncogene Proteins c-aktRNA, MessengerSignal TransductionSquamous Cell Carcinoma of Head and NeckTOR Serine-Threonine KinasesXenograft Model Antitumor AssaysConceptsEpidermal growth factor receptorDownregulation of EGFRSolid tumorsTumor growthNeck squamous cell carcinomaMurine orthotopic xenograft modelHNSCC cell viabilityOral cavity cancerMultiple HNSCC cell linesSquamous cell carcinomaStar strandNovel therapeutic optionsNovel miRNAsMultiple solid tumorsOrthotopic xenograft modelOverexpression of EGFRCoordinated regulationHNSCC cell linesCoordinated targetingGrowth factor receptorComplex regulationDirect intratumoral injectionPathway componentsInducible expressionSignaling AxisBcl-2 Inhibition or FBXW7 Mutation Sensitizes Solid Tumor Cells to HDAC Inhibition In Vitro but Could Prove Difficult to Validate in Patients
Pickering CR, Myers JN. Bcl-2 Inhibition or FBXW7 Mutation Sensitizes Solid Tumor Cells to HDAC Inhibition In Vitro but Could Prove Difficult to Validate in Patients. Cancer Discovery 2013, 3: 258-259. PMID: 23475877, DOI: 10.1158/2159-8290.cd-13-0019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsBiphenyl CompoundsCarcinoma, Squamous CellCell Cycle ProteinsF-Box ProteinsF-Box-WD Repeat-Containing Protein 7Histone Deacetylase InhibitorsHistone DeacetylasesHumansMyeloid Cell Leukemia Sequence 1 ProteinNitrophenolsPiperazinesProto-Oncogene Proteins c-bcl-2SulfonamidesUbiquitin-Protein Ligases
2011
Disruptive TP53 Mutation Is Associated with Aggressive Disease Characteristics in an Orthotopic Murine Model of Oral Tongue Cancer
Sano D, Xie TX, Ow TJ, Zhao M, Pickering CR, Zhou G, Sandulache VC, Wheeler DA, Gibbs RA, Caulin C, Myers JN. Disruptive TP53 Mutation Is Associated with Aggressive Disease Characteristics in an Orthotopic Murine Model of Oral Tongue Cancer. Clinical Cancer Research 2011, 17: 6658-6670. PMID: 21903770, PMCID: PMC3207013, DOI: 10.1158/1078-0432.ccr-11-0046.Peer-Reviewed Original ResearchConceptsDisruptive TP53 mutationsCervical lymph node metastasisOral tongue cancerLymph node metastasisOrthotopic murine modelHNSCC cell linesTP53 mutationsNode metastasisTongue cancerMurine modelCell linesTumor growthNeck squamous cell carcinoma cell linesSquamous cell carcinoma cell linesAggressive disease characteristicsCell carcinoma cell linesFaster tumor growthPoor patient outcomesP53 protein expressionTP53 mutation statusBehavior of tumorsWild-type TP53Western blot analysisOral tongueShorter survival
2001
Is p53 Haploinsufficient for Tumor Suppression? Implications for the p53+/- Mouse Model in Carcinogenicity Testing
Venkatachalam S, Tyner S, Pickering C, Boley S, Recio L, French J, Donehower L. Is p53 Haploinsufficient for Tumor Suppression? Implications for the p53+/- Mouse Model in Carcinogenicity Testing. Toxicologic Pathology 2001, 29: 147-154. PMID: 11695551, DOI: 10.1080/019262301753178555.Peer-Reviewed Original ResearchConceptsEnhanced tumor susceptibilityWild-type p53 alleleP53-deficient miceMouse modelP53 alleleP53 dosageTumor susceptibilityTransgenic mouse modelWild-type littermatesDifferent tumor typesP53 tumor suppressor geneTumor suppressionP53 LOHTumor typesTumorsTumor suppressor geneMiceP53 lossHaploinsufficient tumor suppressorCarcinogenicity testingPreliminary dataOncogenic lesionsCancer formationMechanisms of genotoxicityTumor suppressor