Featured Publications
The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study
Townsend JP, Hassler HB, Wang Z, Miura S, Singh J, Kumar S, Ruddle NH, Galvani AP, Dornburg A. The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study. The Lancet Microbe 2021, 2: e666-e675. PMID: 34632431, PMCID: PMC8486316, DOI: 10.1016/s2666-5247(21)00219-6.Peer-Reviewed Original ResearchConceptsDurability of immunitySARS-CoV-2Human-infecting coronavirusesProbability of reinfectionAntibody levelsMERS-CoVSARS-CoVLong-term immune responsePeak antibody responsePublic health decision makingCOVID-19 pandemic continuesEndemic conditionsCOVID-19 morbidityPublic health measuresVirus SARS-CoVHealth decision makingOptical density levelsDevastating COVID-19 pandemicAntibody declineLikely reinfectionAntibody responseEndemic coronavirusesHCoV-NL63Immune responseHuman coronavirusesInfection with alternate frequencies of SARS-CoV-2 vaccine boosting for patients undergoing antineoplastic cancer treatments
Townsend J, Hassler H, Emu B, Dornburg A. Infection with alternate frequencies of SARS-CoV-2 vaccine boosting for patients undergoing antineoplastic cancer treatments. Journal Of The National Cancer Institute 2023, 115: 1626-1628. PMID: 37599438, PMCID: PMC10699797, DOI: 10.1093/jnci/djad158.Peer-Reviewed Original ResearchConceptsReinfection riskAntineoplastic therapyAntibody dataSARS-CoV-2 infectionSARS-CoV-2 vaccinesChemotherapy-immunotherapy combinationsPfizer-BioNTech BNT162b2COVID-19 vaccinationHigh infection riskFrequent boostingRituximab therapyBreakthrough infectionsVaccination scheduleAntibody levelsBooster scheduleVaccination frequencyImmune responseAdditional interventionsReduced riskHigh riskHormonal treatmentGeneral populationNecessitating assessmentPatientsInfection risk
2012
Controlling Antimicrobial Resistance through Targeted, Vaccine-Induced Replacement of Strains
Tekle YI, Nielsen KM, Liu J, Pettigrew MM, Meyers LA, Galvani AP, Townsend JP. Controlling Antimicrobial Resistance through Targeted, Vaccine-Induced Replacement of Strains. PLOS ONE 2012, 7: e50688. PMID: 23227198, PMCID: PMC3515573, DOI: 10.1371/journal.pone.0050688.Peer-Reviewed Original ResearchConceptsFirst clinical interventionImportant public health toolPan-resistant strainsInsufficient immune responsePublic health toolMulti-resistant strainsStaphylococcus aureus genotypesVaccine efficacyNosocomial outbreaksDrug treatmentImmune responseResistant serotypesFrequent reasonHypothetical vaccineVaccine developmentStrain replacementVaccineInfectious diseasesAureus genotypesClinical interventionsInfectionHealth toolsAntimicrobial resistanceIntervention strategiesSerotypes