2017
Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR
Anderson K. Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR. Protein Engineering Design And Selection 2017, 30: 253-261. PMID: 28338744, PMCID: PMC6438133, DOI: 10.1093/protein/gzx004.Peer-Reviewed Original ResearchConceptsBifunctional thymidylate synthase-dihydrofolate reductaseThymidylate synthase-dihydrofolate reductaseSubstrate channelingDihydrofolate reductaseN-terminal amino acid extensionAmino acid extensionDihydrofolate reductase domainThymidylate synthaseFolate metabolizing enzymesAcid extensionMonofunctional formsPolypeptide chainMutation analysisMolecular mechanismsMetabolic enzymesParasitic protozoaDNA synthesisFunctional regionsInhibitor designSpeciesEnzymeStructural similarityStructural studiesEfficient catalysisLeishmania major
1999
The Catalytic Mechanism of EPSP Synthase Revisited †
Lewis J, Johnson K, Anderson K. The Catalytic Mechanism of EPSP Synthase Revisited †. Biochemistry 1999, 38: 7372-7379. PMID: 10353849, DOI: 10.1021/bi9830258.Peer-Reviewed Original ResearchMeSH Keywords3-Phosphoshikimate 1-CarboxyvinyltransferaseAlkyl and Aryl TransferasesAmino Acid SubstitutionBinding SitesCatalysisChromatography, High Pressure LiquidEscherichia coliFreezingKineticsMutagenesis, Site-DirectedNuclear Magnetic Resonance, BiomolecularPhosphoenolpyruvateProtonsSubstrate SpecificityConceptsEPSP synthaseEnzyme intermediateKinetic competenceSingle-turnover experimentsSubstrate to productSolid-state NMRSolid-state NMR studiesEnzyme assaysEnzyme reaction pathwaySDS-PAGECatalytic mechanismDegrees CSpeciesEnzymeIntermediate speciesNMR studiesSide productsCharacterized reaction productsSample preparationDisappearance of substrateSynthaseReaction productsFormation of productsBreakdown productsReaction pathways
1990
Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site.
Anderson K, Sammons R, Leo G, Sikorski J, Benesi A, Johnson K. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Biochemistry 1990, 29: 1460-5. PMID: 2334707, DOI: 10.1021/bi00458a017.Peer-Reviewed Original ResearchConceptsEnzyme active siteTetrahedral intermediateFormation of pyruvateActive siteEnzyme sitesComparison of quenchingReaction of enzymeTime of incubationTetrahedral centerCompound giving riseReaction pathwaysEnzymatic hydrolysisPeak assignmentsEnzymeNMR experimentsTernary complexNMR measurementsSide productsRate of formationSpectroscopic probesLong time of incubationNMRSpeciesTriethylamineCovalent adducts