2011
Glucose and Inflammation Control Islet Vascular Density and β-Cell Function in NOD Mice Control of Islet Vasculature and Vascular Endothelial Growth Factor by Glucose
Akirav EM, Baquero MT, Opare-Addo LW, Akirav M, Galvan E, Kushner JA, Rimm DL, Herold KC. Glucose and Inflammation Control Islet Vascular Density and β-Cell Function in NOD Mice Control of Islet Vasculature and Vascular Endothelial Growth Factor by Glucose. Diabetes 2011, 60: 876-883. PMID: 21307078, PMCID: PMC3046848, DOI: 10.2337/db10-0793.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDiabetes Mellitus, Type 1Fluorescent Antibody TechniqueGlucoseInflammationInsulin-Secreting CellsIslets of LangerhansMiceMice, Inbred NODReverse Transcriptase Polymerase Chain ReactionVascular Endothelial Growth Factor AConceptsVascular endothelial growth factorIslet vascular densityNOD miceEndothelial cell densityGlucose toleranceEndothelial growth factorΒ-cellsVascular densityInsulin contentIslet vasculatureAnti-CD3 monoclonal antibodyEndothelial cellsGrowth factorDiabetic NOD micePrediabetic NOD miceAltered glucose toleranceImproved glucose toleranceEndothelial cell destructionType 1 diabetesAnti-CD3 mAbΒ-cell functionΒ-cell massHigh glucose levelsΒ-cell proliferationTransfer of supernatants
2009
Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays
Mehnert JM, McCarthy MM, Jilaveanu L, Flaherty KT, Aziz S, Camp RL, Rimm DL, Kluger HM. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Human Pathology 2009, 41: 375-384. PMID: 20004943, PMCID: PMC2824079, DOI: 10.1016/j.humpath.2009.08.016.Peer-Reviewed Original ResearchBlotting, WesternCell LineDisease ProgressionHumansImage Processing, Computer-AssistedImmunohistochemistryMelanomaNevusProportional Hazards ModelsRegression AnalysisSeverity of Illness IndexSkin NeoplasmsStatistics, NonparametricTissue Array AnalysisVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-1Vascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth Factor Receptor-3
2008
High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer
Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, Chung GG. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Human Pathology 2008, 39: 1835-1843. PMID: 18715621, PMCID: PMC2632946, DOI: 10.1016/j.humpath.2008.06.004.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBiomarkers, TumorBreast NeoplasmsCarcinoma, Ductal, BreastCarcinoma, LobularConnecticutFemaleFluorescent Antibody Technique, IndirectHumansImage Processing, Computer-AssistedImmunoenzyme TechniquesKaplan-Meier EstimateMiddle AgedNeuropilin-1Receptors, Vascular Endothelial Growth FactorSurvival RateTissue Array AnalysisVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-1Vascular Endothelial Growth Factor Receptor-2Young AdultConceptsVascular endothelial growth factorEndothelial growth factorBreast cancerVEGFR-1Growth factorNeuropilin-1VEGFR-2Kaplan-Meier survival analysisBreast cancer tissue microarrayVascular endothelial growth factor receptorPrimary breast cancerStandard prognostic factorsEndothelial growth factor receptorPrimary breast adenocarcinomaCancer tissue microarrayTumor-specific expressionGrowth factor receptorPrognostic factorsPrognostic significancePrognostic valueWorse outcomesLarge cohortTissue microarraySurvival analysisSignificant association
2006
Vascular endothelial growth factor, FLT‐1, and FLK‐1 analysis in a pancreatic cancer tissue microarray
Chung GG, Yoon HH, Zerkowski MP, Ghosh S, Thomas L, Harigopal M, Charette LA, Salem RR, Camp RL, Rimm DL, Burtness BA. Vascular endothelial growth factor, FLT‐1, and FLK‐1 analysis in a pancreatic cancer tissue microarray. Cancer 2006, 106: 1677-1684. PMID: 16532435, DOI: 10.1002/cncr.21783.Peer-Reviewed Original ResearchConceptsPancreatic cancer tissue microarrayCancer tissue microarrayTissue microarrayVEGF receptor 1Flt-1Receptor 1Kaplan-Meier survival curvesVascular endothelial growth factor (VEGF) expressionIndependent prognostic factorVascular endothelial growth factorFlk-1Growth factor expressionEndothelial growth factorPrimary antibodyFlt-1 expressionOverall survivalPrognostic factorsWorse survivalAggressive diseaseDisease stagePoor prognosisTumor expressionPancreatic cancerPancreatic adenocarcinomaPrincipal receptor
1999
PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated β-catenin
Ilan N, Mahooti S, Rimm D, Madri J. PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated β-catenin. Journal Of Cell Science 1999, 112: 3005-3014. PMID: 10462517, DOI: 10.1242/jcs.112.18.3005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCattleCells, CulturedCytoskeletal ProteinsEndothelial Growth FactorsEndothelium, VascularGene ExpressionHumansIn Vitro TechniquesLymphokinesModels, BiologicalNeovascularization, PhysiologicPhosphorylationPlatelet Endothelial Cell Adhesion Molecule-1Protein-Tyrosine KinasesTrans-ActivatorsTransfectionTyrosineVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsTyrosine phosphorylationBeta-catenin tyrosine phosphorylationBeta-catenin nuclear translocationAdherens junction formationProtein tyrosine kinasesPECAM-1 functionsTyrosine phosphorylation levelsCell-cell contactSW480 colon carcinoma cellsEndothelial cell-cell contactsCatenin functionVascular endothelial growth factorCell adhesion moleculeTranscriptional factorsPECAM-1Colon carcinoma cellsTyrosine kinaseGamma cateninMajor substrateJunctional proteinsCytoplasmic levelsPhosphorylation levelsNuclear translocationΒ-cateninCatenin