2020
Bempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02)
Diab A, Tannir NM, Bentebibel SE, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, Gettinger SN, Sznol M, Tykodi SS, Curti BD, Tagliaferri MA, Zalevsky J, Hannah AL, Hoch U, Aung S, Fanton C, Rizwan A, Iacucci E, Liao Y, Bernatchez C, Hurwitz ME, Cho DC. Bempegaldesleukin (NKTR-214) plus Nivolumab in Patients with Advanced Solid Tumors: Phase I Dose-Escalation Study of Safety, Efficacy, and Immune Activation (PIVOT-02). Cancer Discovery 2020, 10: 1158-1173. PMID: 32439653, DOI: 10.1158/2159-8290.cd-19-1510.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Agents, ImmunologicalAntineoplastic Combined Chemotherapy ProtocolsCarcinoma, Non-Small-Cell LungCarcinoma, Renal CellFemaleGene Expression Regulation, NeoplasticHumansImmune Checkpoint InhibitorsImmunotherapyInterleukin-2Kidney NeoplasmsLung NeoplasmsLymphocyte CountLymphocytes, Tumor-InfiltratingMaleMelanomaMiddle AgedNivolumabPolyethylene GlycolsProgrammed Cell Death 1 ReceptorTreatment OutcomeYoung AdultConceptsTreatment-related adverse eventsAdvanced solid tumorsPD-L1 statusSolid tumorsGrade 3/4 treatment-related adverse eventsPD-1/PD-L1 blockadeCommon treatment-related adverse eventsPhase I dose-escalation trialPoor prognostic risk factorsTotal objective response rateI dose-escalation studyI dose-escalation trialLongitudinal tumor biopsiesPD-L1 blockadeT-cell enhancementTreatment-related deathsObjective response ratePhase II doseDose-escalation studyDose-escalation trialDose-limiting toxicityFlu-like symptomsPrognostic risk factorsTumor-infiltrating lymphocytesCytotoxicity of CD8Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. Journal Of Investigative Dermatology 2020, 140: 2466-2477. PMID: 32360601, PMCID: PMC8081033, DOI: 10.1016/j.jid.2020.04.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarcinogenesisCell Line, TumorDrug Resistance, NeoplasmEukaryotic Initiation Factor-2FemaleGene Expression Regulation, NeoplasticHumansKaplan-Meier EstimateMelanomaMiceMitogen-Activated Protein KinasesNuclear ProteinsOncogenesPrognosisProtein Kinase InhibitorsProtein StabilityProto-Oncogene Proteins B-rafSkinSkin NeoplasmsTranscription FactorsUbiquitinationXenograft Model Antitumor AssaysConceptsUbiquitin ligase RNF4Elongation factor alphaPatient-derived melanomasIntegrated stress responseTherapy resistancePositive feed-forward loopTranscription factor 4Feed-forward loopOncogenic translationMolecular machineryMajor clinical challengePhosphorylated eIF2αHallmark of melanomaXenograft mouse modelHomologous proteinsStress responseMAPK inhibitorProtein stabilizationMelanoma tumorigenesisTumorigenic propertiesPoor prognosisFactor alphaClinical challengeMouse modelRNF4Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial
Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, Chiang AC, Lilenbaum R, Wilson FH, Omay SB, Yu JB, Jilaveanu L, Tran T, Pavlik K, Rowen E, Gerrish H, Komlo A, Gupta R, Wyatt H, Ribeiro M, Kluger Y, Zhou G, Wei W, Chiang VL, Kluger HM. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. The Lancet Oncology 2020, 21: 655-663. PMID: 32251621, PMCID: PMC7380514, DOI: 10.1016/s1470-2045(20)30111-x.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntibodies, Monoclonal, HumanizedB7-H1 AntigenBiomarkers, TumorBrain NeoplasmsCarcinoma, Non-Small-Cell LungFemaleGene Expression Regulation, NeoplasticHumansMaleMiddle AgedNeoplasm MetastasisConceptsBrain metastasis responseYale Cancer CenterPD-L1 expressionPhase 2 trialUntreated brain metastasesBrain metastasesAdrenal insufficiencyAdverse eventsMetastasis responseCNS diseaseCancer CenterCohort 2Cohort 1Eastern Cooperative Oncology Group performance statusTreatment-related serious adverse eventsModified Response Evaluation CriteriaStage IV NSCLCTreatment-related deathsAcute kidney injuryPD-1 blockadeSerious adverse eventsSolid Tumors criteriaPhase 2 studyProportion of patientsResponse Evaluation Criteria
2019
PLEKHA5 regulates tumor growth in metastatic melanoma
Zhang H, Zhu H, Deng G, Zito CR, Oria VO, Rane CK, Zhang S, Weiss SA, Tran T, Adeniran A, Zhang F, Zhou J, Kluger Y, Bosenberg MW, Kluger HM, Jilaveanu LB. PLEKHA5 regulates tumor growth in metastatic melanoma. Cancer 2019, 126: 1016-1030. PMID: 31769872, PMCID: PMC7147081, DOI: 10.1002/cncr.32611.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnimalsApoptosis Regulatory ProteinsBiomarkers, TumorBrain NeoplasmsCell ProliferationFemaleFollow-Up StudiesGene Expression Regulation, NeoplasticHumansIntracellular Signaling Peptides and ProteinsMaleMelanomaMiceMice, NudeMiddle AgedPhosphatidylinositol 3-KinasesPrognosisProto-Oncogene Proteins c-aktTOR Serine-Threonine KinasesTumor Cells, CulturedXenograft Model Antitumor AssaysYoung AdultConceptsTumor growthDisseminated melanomaExtracranial melanoma metastasesPI3K/AKT/mTOR pathwayMelanoma brain metastasesBetter overall survivalPI3K/Akt/mTORAKT/mTOR pathwayCell proliferationAkt/mTORMelanoma xenograft modelGrowth of tumorsS cell cycle transitionBrain metastasesOverall survivalPoor prognosisMetastatic melanomaMAPK/ERKSubcutaneous inoculationMelanoma metastasesXenograft modelClinical relevanceMelanoma growthNude miceCerebral specimens
2018
Genomic Heterogeneity and the Small Renal Mass
Ueno D, Xie Z, Boeke M, Syed J, Nguyen KA, McGillivray P, Adeniran A, Humphrey P, Dancik GM, Kluger Y, Liu Z, Kluger H, Shuch B. Genomic Heterogeneity and the Small Renal Mass. Clinical Cancer Research 2018, 24: 4137-4144. PMID: 29760223, PMCID: PMC6125159, DOI: 10.1158/1078-0432.ccr-18-0214.Peer-Reviewed Original Research
2017
PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors
Kluger HM, Zito CR, Turcu G, Baine M, Zhang H, Adeniran A, Sznol M, Rimm DL, Kluger Y, Chen L, Cohen JV, Jilaveanu LB. PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors. Clinical Cancer Research 2017, 23: 4270-4279. PMID: 28223273, PMCID: PMC5540774, DOI: 10.1158/1078-0432.ccr-16-3146.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerPD-L1 expressionRenal cell carcinomaPD-1 inhibitorsCell carcinomaImmune-infiltrating cellsMelanoma patientsPD-L1Tumor cellsTumor typesTumor-associated inflammatory cellsCTLA-4 inhibitorsCell lung cancerRenal cell carcinoma cellsHigh response rateClin Cancer ResCell linesMelanoma tumor cellsPD-1Multivariable analysisNSCLC specimensInflammatory cellsLung cancerTissue microarrayResponse rateNuclear IRF-1 expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy in metastatic melanoma
Smithy JW, Moore LM, Pelekanou V, Rehman J, Gaule P, Wong PF, Neumeister VM, Sznol M, Kluger HM, Rimm DL. Nuclear IRF-1 expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy in metastatic melanoma. Journal For ImmunoTherapy Of Cancer 2017, 5: 25. PMID: 28331615, PMCID: PMC5359951, DOI: 10.1186/s40425-017-0229-2.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedB7-H1 AntigenBiomarkers, PharmacologicalDisease-Free SurvivalFemaleGene Expression Regulation, NeoplasticHumansImmunotherapyInterferon Regulatory Factor-1IpilimumabMaleMelanomaMiddle AgedNeoplasm MetastasisNeoplasms, Second PrimaryNivolumabProgrammed Cell Death 1 ReceptorConceptsProgression-free survivalObjective radiographic responsePD-L1 expressionPD-L1IRF-1 expressionMetastatic melanomaAnti-PD-1 therapyCombination ipilimumab/nivolumabHigh PD-L1 expressionAnti-PD-1 immunotherapyYale-New Haven HospitalIpilimumab/nivolumabPD-1 therapyPR/CRPre-treatment formalinRECIST v1.1 criteriaDeath ligand 1Valuable predictive biomarkerMajor unmet needNew Haven HospitalInterferon regulatory factor 1Combination ipilimumabProgressive diseaseRadiographic responseComplete response
2016
Renalase Expression by Melanoma and Tumor-Associated Macrophages Promotes Tumor Growth through a STAT3-Mediated Mechanism
Hollander L, Guo X, Velazquez H, Chang J, Safirstein R, Kluger H, Cha C, Desir G. Renalase Expression by Melanoma and Tumor-Associated Macrophages Promotes Tumor Growth through a STAT3-Mediated Mechanism. Cancer Research 2016, 76: 3884-3894. PMID: 27197188, PMCID: PMC5031238, DOI: 10.1158/0008-5472.can-15-1524.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBiomarkers, TumorBlotting, WesternCase-Control StudiesCell CycleCell ProliferationFemaleFollow-Up StudiesGene Expression Regulation, NeoplasticHumansImmunoenzyme TechniquesMacrophagesMaleMelanomaMiceMice, Inbred C57BLMice, NudeMonoamine OxidaseNeoplasm StagingP38 Mitogen-Activated Protein KinasesPrognosisProto-Oncogene Proteins c-aktSignal TransductionSTAT3 Transcription FactorSurvival RateTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsTumor-associated macrophagesDisease-specific survivalManagement of melanomaPotential therapeutic implicationsCell cycle inhibitor p21Melanoma cell growthPI3K/AktMelanoma cell survivalCell growth arrestPathogenic rolePrimary melanomaToxic injuryMurine xenograftsTherapeutic implicationsTumor growthClinical specimensRenalaseBax activationTumor microenvironmentTumor cellsInhibitor p21Growth arrestSurvival factorElevated expressionMAPK pathway
2015
MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors
Shuch B, Falbo R, Parisi F, Adeniran A, Kluger Y, Kluger HM, Jilaveanu LB. MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors. BioMed Research International 2015, 2015: 192406. PMID: 26448928, PMCID: PMC4584049, DOI: 10.1155/2015/192406.Peer-Reviewed Original ResearchConceptsClear cell renal cell carcinomaCell renal cell carcinomaMetastatic sitesRenal cell carcinomaMET expressionCell carcinomaPredictive biomarkersPrimary tumorMetastatic clear cell renal cell carcinomaMetastatic kidney cancerAppropriate patient selectionDistant metastatic sitesPatient selectionMetastatic tissuesKidney cancerMET pathwayTissue microarrayBiomarker assessmentNumber of casesPrimary siteModerate concordancePathway inhibitorTumorsDistant tissuesNephrectomyCombination Therapy with Anti–CTLA-4 and Anti–PD-1 Leads to Distinct Immunologic Changes In Vivo
Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R, Dhodapkar MV, Dhodapkar KM. Combination Therapy with Anti–CTLA-4 and Anti–PD-1 Leads to Distinct Immunologic Changes In Vivo. The Journal Of Immunology 2015, 194: 950-959. PMID: 25539810, PMCID: PMC4380504, DOI: 10.4049/jimmunol.1401686.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntigens, SurfaceAntineoplastic Combined Chemotherapy ProtocolsCTLA-4 AntigenCytokinesGene Expression ProfilingGene Expression Regulation, NeoplasticHumansImmunophenotypingIpilimumabLymphocytes, Tumor-InfiltratingNeoplasmsNivolumabProgrammed Cell Death 1 ReceptorSignal TransductionT-Lymphocyte SubsetsConceptsPD-1T cellsCTLA-4Checkpoint blockadeCombination therapyReceptor occupancyCombination immune checkpoint blockadeCTLA-4 immune checkpointsPD-1 receptor occupancyTransitional memory T cellsAnti-PD-1 therapyAnti CTLA-4Immune-based combinationsPD-1 blockadeSoluble IL-2RImmune checkpoint blockadeNK cell functionMemory T cellsTherapy-induced changesT cell activationTumor T cellsHuman T cellsRemarkable antitumor effectImmunologic changesImmunologic effectsRole of Chitinase 3–like-1 and Semaphorin 7a in Pulmonary Melanoma Metastasis
Ma B, Herzog EL, Lee CG, Peng X, Lee CM, Chen X, Rockwell S, Koo JS, Kluger H, Herbst RS, Sznol M, Elias JA. Role of Chitinase 3–like-1 and Semaphorin 7a in Pulmonary Melanoma Metastasis. Cancer Research 2015, 75: 487-496. PMID: 25511377, PMCID: PMC4321965, DOI: 10.1158/0008-5472.can-13-3339.Peer-Reviewed Original ResearchConceptsMelanoma lung metastasisPulmonary melanoma metastasesPulmonary metastasesLung metastasesMelanoma metastasesGenetic deletionBreast cancer cellsPlexin C1 receptorsPulmonary microenvironmentPoor prognosisSemaphorin 7AMelanoma spreadChitinase 3MetastasisCHI3L1Cancer progressionSema7AInhibitory wayCancer cellsReceptorsSignificant reductionΒ1 integrinNovel pathwayCritical roleIL13Rα2
2013
Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel
Jilaveanu LB, Zhao F, Zito CR, Kirkwood JM, Nathanson KL, D'Andrea K, Wilson M, Rimm DL, Flaherty KT, Lee SJ, Kluger HM. Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel. PLOS ONE 2013, 8: e69748. PMID: 23936348, PMCID: PMC3735539, DOI: 10.1371/journal.pone.0069748.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsBiomarkers, TumorCarboplatinFemaleGene Expression Regulation, NeoplasticHumansKaplan-Meier EstimateMaleMiddle AgedMolecular Targeted TherapyNiacinamidePaclitaxelPhenylurea CompoundsSorafenibConceptsProgression-free survivalOverall survivalVEGF-R1FGF-R1Paclitaxel-based therapyVEGF-R1 expressionPre-treatment tumorsPredictive biomarker signaturesMultitarget kinase inhibitorPDGF-RβSitu protein expressionTherapeutic ratioTaxane sensitivityMitogen-activated protein kinase pathwayPatientsVEGF-R3CarboplatinSorafenibVEGF-R2C-kitKinase inhibitorsTherapyProtein expressionPhase IIISorafenib targets
2012
Integrated analysis of tumor samples sheds light on tumor heterogeneity.
Parisi F, Micsinai M, Strino F, Ariyan S, Narayan D, Bacchiocchi A, Cheng E, Xu F, Li P, Kluger H, Halaban R, Kluger Y. Integrated analysis of tumor samples sheds light on tumor heterogeneity. The Yale Journal Of Biology And Medicine 2012, 85: 347-61. PMID: 23012583, PMCID: PMC3447199.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorChromosome MappingChromosomes, HumanDNA Copy Number VariationsEvolution, MolecularGene Expression ProfilingGene Expression Regulation, NeoplasticGenes, NeoplasmHumansIntercellular Signaling Peptides and ProteinsKaryotypingMelanomaMutationOligonucleotide Array Sequence AnalysisPolymorphism, Single NucleotideProto-Oncogene Proteins B-rafConceptsHigh-throughput profilingGene expression levelsExpression levelsDifferent gene expression levelsGene expression profilingCopy number analysisExpression profilingSNP arrayPathway analysisCopy number statusWnt pathwayTumor samplesNumber alteration profilesTumor heterogeneityTumor evolutionCopy number alteration profilesGenomic aberrationsIntegrated analysisCell linesTumor subclonesNumber analysisNumber statusProfilingDriver mutationsRecurrent association
2010
A Role for ATF2 in Regulating MITF and Melanoma Development
Shah M, Bhoumik A, Goel V, Dewing A, Breitwieser W, Kluger H, Krajewski S, Krajewska M, DeHart J, Lau E, Kallenberg DM, Jeong H, Eroshkin A, Bennett DC, Chin L, Bosenberg M, Jones N, Ronai ZA. A Role for ATF2 in Regulating MITF and Melanoma Development. PLOS Genetics 2010, 6: e1001258. PMID: 21203491, PMCID: PMC3009656, DOI: 10.1371/journal.pgen.1001258.Peer-Reviewed Original ResearchConceptsMelanoma developmentMouse melanoma modelHuman melanoma cell linesMITF expressionMelanoma tissue microarrayMelanoma cell linesMetastatic diseasePoor prognosisTissue microarrayXenograft modelMelanoma modelPrimary specimensPrimary human melanocytesOncogenic BRAFMiceGene expression profilingHigh MITF expressionDependent suppressionATF2 knockdownCell linesSoft agarHuman melanocytesMelanocytesMelanoma susceptibilityPrimary melanocytes
2009
Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer
Woo HH, Zhou Y, Yi X, David CL, Zheng W, Gilmore-Hebert M, Kluger HM, Ulukus EC, Baker T, Stoffer JB, Chambers SK. Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer. Oncogene 2009, 28: 1176-1186. PMID: 19151756, DOI: 10.1038/onc.2008.469.Peer-Reviewed Original ResearchConceptsBreast cancerBreast cancer tissue arrayNuclear HuR expressionBreast cancer progressionC-fmsC-fms proto-oncogene expressionNodal metastasisPoor prognosisPoor survivalProto-oncogene c-fmsProto-oncogene expressionBreast tumorsGlucocorticoid stimulationTissue arraysCancer progressionHuR expressionRNA expressionDirect targetC-fms mRNACancer biologyC-fms RNACancer
2008
Expression patterns and prognostic value of Bag-1 and Bcl-2 in breast cancer
Nadler Y, Camp RL, Giltnane JM, Moeder C, Rimm DL, Kluger HM, Kluger Y. Expression patterns and prognostic value of Bag-1 and Bcl-2 in breast cancer. Breast Cancer Research 2008, 10: r35. PMID: 18430249, PMCID: PMC2397537, DOI: 10.1186/bcr1998.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic AgentsBiomarkers, TumorBreast NeoplasmsDNA-Binding ProteinsDrug Resistance, NeoplasmFemaleFluorescent Antibody TechniqueFollow-Up StudiesGene Expression Regulation, NeoplasticHumansImmunohistochemistryKaplan-Meier EstimateLymphatic MetastasisMiddle AgedPredictive Value of TestsPrognosisProportional Hazards ModelsProtein Array AnalysisProto-Oncogene Proteins c-bcl-2Receptors, EstrogenReceptors, ProgesteroneTranscription FactorsTreatment OutcomeConceptsNode-positive subsetHER2/neuProgesterone receptorBreast cancerEstrogen receptorBcl-2 expressionBAG-1 expressionImproved survivalBcl-2Anti-apoptotic mediator Bcl-2Breast tumorsSteroid receptor positivitySubset of patientsBAG-1Antihormonal therapyFavorable prognosisReceptor positivityMultivariable analysisPathological variablesEntire cohortPrognostic valuePrognostic markerImproved outcomesLarge cohortClinical development
2007
Increased Expression of the E3 Ubiquitin Ligase RNF5 Is Associated with Decreased Survival in Breast Cancer
Bromberg KD, Kluger HM, Delaunay A, Abbas S, DiVito KA, Krajewski S, Ronai Z. Increased Expression of the E3 Ubiquitin Ligase RNF5 Is Associated with Decreased Survival in Breast Cancer. Cancer Research 2007, 67: 8172-8179. PMID: 17804730, PMCID: PMC2962863, DOI: 10.1158/0008-5472.can-07-0045.Peer-Reviewed Original ResearchConceptsRNF5 expressionBreast cancer cellsCell linesUbiquitin E3 ligasesE3 ubiquitin ligaseMutant breast cancer cellsEndoplasmic reticulum stress responseP53-dependent functionsTumor-derived cell linesCancer cellsImportant regulatory roleReticulum stress responseP53-mutant breast cancer cellsMetastatic melanoma specimensActin cytoskeletal alterationsActin cytoskeletonE3 ligasesHuman breast cancer specimensSelective ubiquitinationUbiquitin ligaseNovel regulatorPaclitaxel-induced apoptosisRelated cell linesBreast cancer progressionStress response
2006
Expression of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptors 1 and 2 in Melanoma
McCarthy MM, DiVito KA, Sznol M, Kovacs D, Halaban R, Berger AJ, Flaherty KT, Camp RL, Lazova R, Rimm DL, Kluger HM. Expression of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptors 1 and 2 in Melanoma. Clinical Cancer Research 2006, 12: 3856-3863. PMID: 16778114, PMCID: PMC1839847, DOI: 10.1158/1078-0432.ccr-06-0190.Peer-Reviewed Original ResearchMeSH KeywordsGene Expression RegulationGene Expression Regulation, NeoplasticHumansMelanomaNeoplasm MetastasisOligonucleotide Array Sequence AnalysisReceptors, TNF-Related Apoptosis-Inducing LigandReceptors, Tumor Necrosis FactorReference ValuesCharacterizing disease states from topological properties of transcriptional regulatory networks
Tuck DP, Kluger HM, Kluger Y. Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinformatics 2006, 7: 236. PMID: 16670008, PMCID: PMC1482723, DOI: 10.1186/1471-2105-7-236.Peer-Reviewed Original ResearchConceptsTranscriptional regulatory networksRegulatory networksTranscription factorsTranscriptional networksRegulated genesGene deregulationExpression profilesDiseased statesGene regulatory networksCentrality of genesGene expression experimentsGene expression profilesGene expression studiesGene centralityRegulatory linkExpression experimentsExpression studiesGene linksGenesCell typesExpression datasetsGene subsetsDifferential activityNormal cellsRemarkable degree
2004
Expression Profiling Reveals Novel Pathways in the Transformation of Melanocytes to Melanomas
Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R. Expression Profiling Reveals Novel Pathways in the Transformation of Melanocytes to Melanomas. Cancer Research 2004, 64: 5270-5282. PMID: 15289333, DOI: 10.1158/0008-5472.can-04-0731.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkers, TumorCell Transformation, NeoplasticCohort StudiesDown-RegulationGene Expression ProfilingGene Expression Regulation, NeoplasticHumansLymphatic MetastasisMelanocytesMelanomaMiceNuclear ProteinsOligonucleotide Array Sequence AnalysisPrognosisSignal TransductionSkin NeoplasmsSurvival RateTranscription FactorsTransfectionTwist-Related Protein 1Ubiquitin ThiolesteraseConceptsGlobal differential gene expressionMembrane trafficking eventsNovel pathwayNormal melanocytesHelix protein TwistAdditional transcriptional regulatorsDifferential gene expressionMelanoma cellsTransformation of melanocytesCpG promoter methylationNormal human melanocytesTrafficking eventsTranscriptional regulatorsEmbryonic developmentGrowth suppressorChromosomal regionsExpression profilingGene expressionNotch pathwayOligonucleotide microarraysMelanoma tissue microarrayDifferential expressionGenesHuman melanocytesGrowth advantage