2020
[11C]Methionine and [11C]PBR28 as PET Imaging Tracers to Differentiate Metastatic Tumor Recurrence or Radiation Necrosis
Tran TT, Gallezot JD, Jilaveanu LB, Zito C, Turcu G, Lim K, Nabulsi N, Huang H, Huttner A, Kluger HM, Chiang VL, Carson R. [11C]Methionine and [11C]PBR28 as PET Imaging Tracers to Differentiate Metastatic Tumor Recurrence or Radiation Necrosis. Molecular Imaging 2020, 19: 1536012120968669. PMID: 33147119, PMCID: PMC7649862, DOI: 10.1177/1536012120968669.Peer-Reviewed Original ResearchConceptsRadiation necrosisTumor regrowthStereotactic radiosurgeryBrain metastasesPET tracersHigh amino acid uptakeMetastatic tumor recurrenceLung cancer cellsSpecific PET tracersPET imaging tracerTumor recurrenceAmino acid uptakeImaging tracerReliable markerDiagnostic imagingLack of specificityAcid uptakeCancer cellsSpecific markersMethionine levelsTranslocator proteinSequential imagingInflammationMetastasisDual tracer
2015
Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases?
Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? Journal Of Neurosurgery 2015, 125: 17-23. PMID: 26544782, DOI: 10.3171/2015.6.jns142763.Peer-Reviewed Original ResearchConceptsTreatment-related imaging changesCytotoxic chemotherapyRadiation necrosisBrain metastasesSystemic therapyStereotactic Gamma Knife radiosurgeryMedian overall survivalGamma knife radiosurgeryHigh-dose radiationChemotherapy eraGK surgeryImmunotherapy increasesMedian followConclusions PatientsOverall survivalImaging changesGK treatmentKnife radiosurgeryInflammatory reactionStereotactic radiosurgeryLower riskRadiosurgical treatmentPatientsImmunotherapyTherapy