2019
EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer
Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, Liu Z, Henick BS, Wurtz A, Cai G, Plodkowski AJ, Long NM, Halpenny DF, Killam J, Oliva I, Schultz N, Riely GJ, Arcila ME, Ladanyi M, Zelterman D, Herbst RS, Goldberg SB, Awad MM, Garon EB, Gettinger S, Hellmann MD, Politi K. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Annals Of Oncology 2019, 30: 1311-1320. PMID: 31086949, PMCID: PMC6683857, DOI: 10.1093/annonc/mdz141.Peer-Reviewed Original ResearchMeSH KeywordsAgedAllelesAntineoplastic Agents, ImmunologicalB7-H1 AntigenBiomarkers, TumorCarcinoma, Non-Small-Cell LungDrug Resistance, NeoplasmErbB ReceptorsFemaleGenetic HeterogeneityHumansLungLung NeoplasmsMaleMiddle AgedMutationProgrammed Cell Death 1 ReceptorProgression-Free SurvivalRetrospective StudiesTobacco SmokingConceptsEGFR-mutant tumorsMemorial Sloan-Kettering Cancer CenterYale Cancer CenterImmune checkpoint inhibitorsPD-L1 expressionImmune checkpoint blockadeTumor mutation burdenCancer CenterLung tumorsCheckpoint blockadeEGFR mutant lung tumorsMutant tumorsCheckpoint inhibitorsLung cancerMutation burdenImmune checkpoint blockade treatmentLow tumor mutation burdenDana-Farber Cancer InstituteEGFR wild-type lung cancersCheckpoint blockade treatmentCell lung cancerEGFR mutation subtypesSimilar smoking historyCell death 1Lung cancer casesThe Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer
Lee JW, Zhang Y, Eoh KJ, Sharma R, Sanmamed MF, Wu J, Choi J, Park HS, Iwasaki A, Kaftan E, Chen L, Papadimitrakopoulou V, Herbst RS, Koo JS. The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal Of Thoracic Oncology 2019, 14: 1046-1060. PMID: 30771521, PMCID: PMC6542636, DOI: 10.1016/j.jtho.2019.02.004.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinoma of LungAnimalsAntineoplastic Agents, ImmunologicalAntineoplastic Combined Chemotherapy ProtocolsB7-H1 AntigenDrug SynergismFemaleLung NeoplasmsMAP Kinase Kinase KinasesMiceMice, KnockoutMice, TransgenicMyeloid-Derived Suppressor CellsProgrammed Cell Death 1 ReceptorProtein Kinase InhibitorsProto-Oncogene Proteins p21(ras)PyridonesPyrimidinonesSurvival AnalysisTumor Suppressor Protein p53ConceptsImmune cell populationsLung tumorsMEK inhibitorsDeath-1Survival outcomesLung cancerL1 mAbsTumor-infiltrating immune cell populationsTumor-infiltrating immune cellsCell death ligand 1Flow cytometryLung cancer mouse modelAdenoviral Cre recombinaseAutochthonous lung tumorsImmunomodulatory monoclonal antibodiesTumor-infiltrating CD8PD-L1 expressionSingle-agent therapyTumor-bearing lungsDeath ligand 1Tumor-free miceLung cancer modelCombinatorial antitumor effectCancer mouse modelCell populations
2017
Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases
Stevens LE, Cheung WKC, Adua SJ, Arnal-Estapé A, Zhao M, Liu Z, Brewer K, Herbst RS, Nguyen DX. Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Research 2017, 77: 1905-1917. PMID: 28196904, PMCID: PMC5468792, DOI: 10.1158/0008-5472.can-16-1978.Peer-Reviewed Original ResearchConceptsBrain metastatic nicheRisk of relapseDistant metastasisPoor prognosisLUAD subtypesLung tumorsLung adenocarcinomaLUAD cellsMetastatic outgrowthMetastatic nicheCancer ResCancer cellsECM-mediated signalingExtracellular matrix moleculesCell survivalMolecular signaturesDifferential expressionHMMRMatrix moleculesImportant mechanismCellsRelapseAdenocarcinomaPrognosisMetastasis
2010
Combination Treatment with MEK and AKT Inhibitors Is More Effective than Each Drug Alone in Human Non-Small Cell Lung Cancer In Vitro and In Vivo
Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, Peng Z, Herbst RS, Papadimitrakopoulou V, Minna JD, Peyton M, Roth JA. Combination Treatment with MEK and AKT Inhibitors Is More Effective than Each Drug Alone in Human Non-Small Cell Lung Cancer In Vitro and In Vivo. PLOS ONE 2010, 5: e14124. PMID: 21124782, PMCID: PMC2993951, DOI: 10.1371/journal.pone.0014124.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsApoptosisBenzimidazolesCarcinoma, Non-Small-Cell LungCell CycleCell Line, TumorCell SurvivalDose-Response Relationship, DrugDrug SynergismFemaleHeterocyclic Compounds, 3-RingHumansLung NeoplasmsMiceMice, Inbred BALB CMice, NudeMitogen-Activated Protein Kinase KinasesProto-Oncogene Proteins c-aktSignal TransductionSurvival AnalysisTumor BurdenXenograft Model Antitumor AssaysConceptsNon-small cell lung cancerCell lung cancerCombination of AZD6244Lung cancer cell linesCombination therapyLung cancerCancer cell linesTumor growthTumor tissueHuman non-small cell lung cancerLung cancer cell growthCell linesHuman lung cancer cell linesSingle drug treatmentSynergistic antitumor activityHuman lung tumorsAnimal survival timeMean animal survival timeCancer cell growthXenograft tumor growthP-AKT expressionLung tumorsDrug treatmentDrug combinationsSurvival time
2007
Expression of epidermal growth factor (EGF)/transforming growth factor-α by human lung cancer cells determines their response to EGF receptor tyrosine kinase inhibition in the lungs of mice
Wu W, O'Reilly MS, Langley RR, Tsan RZ, Baker CH, Bekele N, Tang XM, Onn A, Fidler IJ, Herbst RS. Expression of epidermal growth factor (EGF)/transforming growth factor-α by human lung cancer cells determines their response to EGF receptor tyrosine kinase inhibition in the lungs of mice. Molecular Cancer Therapeutics 2007, 6: 2652-2663. PMID: 17913856, DOI: 10.1158/1535-7163.mct-06-0759.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAnimalsAntineoplastic AgentsBlotting, WesternCell ProliferationEpidermal Growth FactorErbB ReceptorsGefitinibGene DosageHumansLung NeoplasmsMaleMiceMice, NudePhosphorylationPurinesQuinazolinesReverse Transcriptase Polymerase Chain ReactionTransforming Growth Factor alphaXenograft Model Antitumor AssaysConceptsTumor-associated endothelial cellsEpidermal growth factor receptorTreatment of miceLung cancerEpidermal growth factorNCI-H441Endothelial cellsLung tumorsLigand expressionNon-small cell lung cancerExpression of EGFTumor cellsEGFR tyrosine kinase inhibitorsEGFR tyrosine kinase inhibitor gefitinibGrowth factorReceptor tyrosine kinase inhibitionTyrosine kinase inhibitor gefitinibLymph node metastasisCell lung cancerEGF receptor tyrosine kinase inhibitionLungs of miceHuman lung cancer cellsHuman lung cancerPrimary tumor growthTyrosine kinase inhibitors
2003
Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response.
Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, Munden RF. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. Journal Of Clinical Oncology 2003, 21: 2574-82. PMID: 12829678, DOI: 10.1200/jco.2003.01.144.Peer-Reviewed Original ResearchConceptsTumor sizeTumor responseLung tumorsSerial measurementsComputed tomographyWorld Health Organization criteriaResponse Evaluation CriteriaLung tumor sizeProgressive diseaseWHO criteriaOrganization criteriaLung lesionsSolid malignanciesStudy groupCT scanSolid tumorsIrregular tumorTumorsThoracic radiologistsResponse criteriaSignificant differencesPatientsInterobserver measurementsUnidimensional measurementBD measurements
1998
Potential of the aminosterol, squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma.
Teicher BA, Williams JI, Takeuchi H, Ara G, Herbst RS, Buxton D. Potential of the aminosterol, squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma. Anticancer Research 1998, 18: 2567-73. PMID: 9703911.Peer-Reviewed Original ResearchMeSH Keywords9,10-Dimethyl-1,2-benzanthraceneAnimalsAnticarcinogenic AgentsAntineoplastic AgentsCarcinoma, Lewis LungCell DivisionCholestanolsCisplatinCombined Modality TherapyCyclophosphamideDoxorubicinDrug Therapy, CombinationFemaleFluorouracilMammary Neoplasms, ExperimentalMiceOxygenOxygen ConsumptionPaclitaxelPartial PressureRatsRats, Inbred F344ConceptsLewis lung carcinomaTumor growth delayPost-tumor implantationLung carcinomaGrowth delayLung metastasesTumor implantationMammary carcinomaTumor oxygenationDay 4Chemotherapeutic agentsPrimary Lewis lung tumorMurine Lewis lung carcinomaDaily subcutaneous injectionsLewis lung tumorTumor-bearing animalsModest effectCombination therapyContinuous infusionCytotoxic therapySystemic diseaseSubcutaneous injectionLung tumorsAntiangiogenic agentsHypoxic fraction