2021
Genetic Determinants of EGFR-Driven Lung Cancer Growth and Therapeutic Response In VivoTumor Suppressor Genes and EGFR-Driven Lung Adenocarcinoma
Foggetti G, Li C, Cai H, Hellyer JA, Lin WY, Ayeni D, Hastings K, Choi J, Wurtz A, Andrejka L, Maghini DG, Rashleigh N, Levy S, Homer R, Gettinger SN, Diehn M, Wakelee HA, Petrov DA, Winslow MM, Politi K. Genetic Determinants of EGFR-Driven Lung Cancer Growth and Therapeutic Response In VivoTumor Suppressor Genes and EGFR-Driven Lung Adenocarcinoma. Cancer Discovery 2021, 11: 1736-1753. PMID: 33707235, PMCID: PMC8530463, DOI: 10.1158/2159-8290.cd-20-1385.Peer-Reviewed Original ResearchConceptsSuppressor geneKey tumor suppressorPutative tumor suppressor geneTumor suppressor geneSensitivity of EGFRTumor growthOncogenic contextTumor suppressorHuman EGFRGenetic determinantsKeap1 pathwayComplex genotypesTumor suppressor gene alterationsLung cancer growthGenesDeficient lung adenocarcinomaLung adenocarcinomaGenetic alterationsIssue featureStrong driverCancer growthEGFR inhibitorsKinase inhibitorsInactivationGene alterations
2019
The EGFR Exon 19 Mutant L747-A750>P Exhibits Distinct Sensitivity to Tyrosine Kinase Inhibitors in Lung Adenocarcinoma
Truini A, Starrett JH, Stewart T, Ashtekar K, Walther Z, Wurtz A, Lu D, Park JH, DeVeaux M, Song X, Gettinger S, Zelterman D, Lemmon MA, Goldberg SB, Politi K. The EGFR Exon 19 Mutant L747-A750>P Exhibits Distinct Sensitivity to Tyrosine Kinase Inhibitors in Lung Adenocarcinoma. Clinical Cancer Research 2019, 25: 6382-6391. PMID: 31182434, PMCID: PMC6825535, DOI: 10.1158/1078-0432.ccr-19-0780.Peer-Reviewed Original Research
2018
Oncolytic virus immunotherapy: future prospects for oncology
Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. Journal For ImmunoTherapy Of Cancer 2018, 6: 140. PMID: 30514385, PMCID: PMC6280382, DOI: 10.1186/s40425-018-0458-z.Peer-Reviewed Original ResearchConceptsOncolytic virusesSevere immune-related adverse eventsImmune-related adverse eventsAnti-tumor immune responseEarly-stage clinical trialsImmune checkpoint inhibitorsSerious adverse effectsOncolytic viral therapyLimited therapeutic responseAnti-cancer treatmentLocal target cellsCheckpoint inhibitorsSalvage therapyTolerability profileCytotoxic chemotherapyAdverse eventsImmune dysregulationOncologic careTherapeutic optionsTumor bedSuch therapyTherapeutic responseClinical trialsNovel therapiesViral therapyA dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers
Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W, Zelterman D, Politi K, Kavathas P, Kaech S, Yu X, Zhao H, Schlessinger J, Lifton R, Rimm DL, Chen L, Herbst RS, Schalper KA. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nature Communications 2018, 9: 3196. PMID: 30097571, PMCID: PMC6086912, DOI: 10.1038/s41467-018-05032-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodies, BlockingCarcinogenesisCarcinoma, Non-Small-Cell LungCell ProliferationCytotoxicity, ImmunologicHistocompatibility Antigens Class IHumansLung NeoplasmsLymphocyte ActivationLymphocytes, Tumor-InfiltratingMaleMice, Inbred NODMice, SCIDMutant ProteinsMutationPeptidesPhenotypeProgrammed Cell Death 1 ReceptorReproducibility of ResultsSurvival AnalysisTobaccoConceptsImmune checkpoint blockersCheckpoint blockersQuantitative immunofluorescenceNon-small cell lung carcinoma patientsCell lung carcinoma patientsNon-small cell lung carcinomaPatient-derived xenograft modelsIntratumoral T cellsMultiplexed quantitative immunofluorescencePD-1 blockadeLevels of CD3Lung carcinoma patientsCell lung carcinomaT cell proliferationPre-treatment samplesTIL phenotypeSurvival benefitCarcinoma patientsEffector capacityLung carcinomaT cellsWhole-exome DNA sequencingXenograft modelFavorable responseBlockersCollateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors
Stamatouli AM, Quandt Z, Perdigoto AL, Clark PL, Kluger H, Weiss SA, Gettinger S, Sznol M, Young A, Rushakoff R, Lee J, Bluestone JA, Anderson M, Herold KC. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67: dbi180002. PMID: 29937434, PMCID: PMC6054443, DOI: 10.2337/dbi18-0002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, ImmunologicalAutoimmune DiseasesB7-H1 AntigenDiabetes Mellitus, Type 1Genetic Predisposition to DiseaseGenotypeHLA-DR4 AntigenHumansHypoglycemic AgentsInsulinInsulin SecretionIsoantibodiesKetosisModels, ImmunologicalNeoplasmsPancreasPancreatitisProgrammed Cell Death 1 ReceptorConceptsInsulin-dependent diabetesCheckpoint inhibitorsAdverse eventsHLA-DR4Classic type 1 diabetesPD-L1 checkpoint inhibitorsEvidence of pancreatitisImmune adverse eventsSolid organ cancersType 1 diabetesPeridiagnosis periodPositive autoantibodiesL1 antibodyInsulin-DependentHigh riskPatientsDiabetesCancerInhibitorsKetoacidosisAutoimmuneAutoantibodiesPancreatitisComplicationsSyndrome
2015
Immune Checkpoint Modulation for Non–Small Cell Lung Cancer
Soria JC, Marabelle A, Brahmer JR, Gettinger S. Immune Checkpoint Modulation for Non–Small Cell Lung Cancer. Clinical Cancer Research 2015, 21: 2256-2262. PMID: 25979932, DOI: 10.1158/1078-0432.ccr-14-2959.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerAdvanced non-small cell lung cancerCell lung cancerImmune checkpointsL1 antibodyLung cancerClinical trialsT cellsImmune-related progression-free survivalCytotoxic T-lymphocyte-associated protein 4Response rateT-lymphocyte-associated protein 4Tumor PD-L1 expressionRandomized phase II trialImmune checkpoint modulationObjective response ratePD-L1 expressionPhase II trialProgression-free survivalDeath ligand 1Immunosuppressive T cellsAdditional clinical trialsLung cancer patientsLow toxicity profileNSCLC histology
2014
Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1
Pirazzoli V, Nebhan C, Song X, Wurtz A, Walther Z, Cai G, Zhao Z, Jia P, de Stanchina E, Shapiro EM, Gale M, Yin R, Horn L, Carbone DP, Stephens PJ, Miller V, Gettinger S, Pao W, Politi K. Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1. Cell Reports 2014, 7: 999-1008. PMID: 24813888, PMCID: PMC4074596, DOI: 10.1016/j.celrep.2014.04.014.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAfatinibAnimalsAntibodies, Monoclonal, HumanizedAntineoplastic Combined Chemotherapy ProtocolsCell Line, TumorCetuximabDrug Resistance, NeoplasmErbB ReceptorsHumansLung NeoplasmsMechanistic Target of Rapamycin Complex 1MiceMice, NudeMice, TransgenicMultiprotein ComplexesMutationQuinazolinesRandom AllocationTOR Serine-Threonine KinasesXenograft Model Antitumor AssaysConceptsTyrosine kinase inhibitorsFirst-generation tyrosine kinase inhibitorEGFR-mutant lung adenocarcinomaLung adenocarcinomaMechanisms of resistanceEGFR antibody cetuximabPotential therapeutic strategyBiopsy specimensAntibody cetuximabDrug combinationsMouse modelTherapeutic strategiesAfatinibAddition of rapamycinCetuximabDual inhibitionAcquired ResistanceKinase inhibitorsGenomic alterationsAdenocarcinomaPatientsActivationGenomic mechanismsDrugsMTORC1 activationReduced NF1 Expression Confers Resistance to EGFR Inhibition in Lung Cancer
de Bruin EC, Cowell C, Warne PH, Jiang M, Saunders RE, Melnick MA, Gettinger S, Walther Z, Wurtz A, Heynen GJ, Heideman DA, Gómez-Román J, García-Castaño A, Gong Y, Ladanyi M, Varmus H, Bernards R, Smit EF, Politi K, Downward J. Reduced NF1 Expression Confers Resistance to EGFR Inhibition in Lung Cancer. Cancer Discovery 2014, 4: 606-619. PMID: 24535670, PMCID: PMC4011693, DOI: 10.1158/2159-8290.cd-13-0741.Peer-Reviewed Original ResearchConceptsLung cancerMAP-ERK kinase (MEK) inhibitorsEGF receptorEGFR-mutant lung adenocarcinomaKinase inhibitorsHuman lung cancer cell linesResistance of lungSubgroup of patientsLung cancer cell linesCancer cell linesClinical responsivenessCombination therapyEGFR-TKIEGFR mutationsErlotinib resistanceLung adenocarcinomaRAS-ERK signalingEGFR inhibitionMEK inhibitorsErlotinibReduced expressionNF1 expressionPatientsCell linesNeurofibromin levels