2024
Phase II Trial of Afatinib in Patients With EGFR-Mutated Solid Tumors Excluding Lung Cancer: Results From NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol A
Gettinger S, Song Z, Reckamp K, Moscow J, Gray R, Wang V, McShane L, Rubinstein L, Patton D, Williams P, Hamilton S, Kong X, Tricoli J, Conley B, Arteaga C, Harris L, O'Dwyer P, Chen A, Flaherty K. Phase II Trial of Afatinib in Patients With EGFR-Mutated Solid Tumors Excluding Lung Cancer: Results From NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol A. JCO Precision Oncology 2024, 8: e2300725. PMID: 38986051, DOI: 10.1200/po.23.00725.Peer-Reviewed Original ResearchMeSH KeywordsAdultAfatinibAgedAged, 80 and overErbB ReceptorsFemaleHumansMaleMiddle AgedMutationNeoplasmsConceptsProgression-free survivalTyrosine kinase inhibitorsEGFR tyrosine kinase inhibitorsNCI-MATCHLung cancerGlioblastoma multiformeOverall survivalAdvanced non-small cell lung cancerNational Cancer Institute-Molecular AnalysisNon-small cell lung cancerEnd pointsTumor genomic testingTrial primary end pointPhase 2 trialPhase II trialSecondary end pointsPrimary end pointCell lung cancerCohort of patientsMedian OSStable diseaseAdenosquamous carcinomaProtocol therapyPartial responseArm A
2021
Tumor DNA Mutations From Intraparenchymal Brain Metastases Are Detectable in CSF
Cheok SK, Narayan A, Arnal-Estape A, Gettinger S, Goldberg SB, Kluger HM, Nguyen D, Patel A, Chiang V. Tumor DNA Mutations From Intraparenchymal Brain Metastases Are Detectable in CSF. JCO Precision Oncology 2021, 5: 163-172. PMID: 34250381, PMCID: PMC8232069, DOI: 10.1200/po.20.00292.Peer-Reviewed Original ResearchConceptsIntraparenchymal brain metastasesBrain metastasesCell-free DNAExtracranial tumorsBrain metastasis tissuesProgressive brain metastasesThird of patientsNormal pressure hydrocephalusTumor DNA mutationsPrimary cancer typeAnalysis of CSFSamples of CSFLeptomeningeal diseaseEffective surrogate markerBrain biopsyPressure hydrocephalusLumbar punctureSurrogate markerCancer-associated genesMetastasis tissuesPatientsMetastasisDiscordant responsesRenal cellsGenomic profiling
2020
Randomized Trial of Afatinib Plus Cetuximab Versus Afatinib Alone for First-Line Treatment of EGFR-Mutant Non-Small-Cell Lung Cancer: Final Results From SWOG S1403.
Goldberg SB, Redman MW, Lilenbaum R, Politi K, Stinchcombe TE, Horn L, Chen EH, Mashru SH, Gettinger SN, Melnick MA, Herbst RS, Baumgart MA, Miao J, Moon J, Kelly K, Gandara DR. Randomized Trial of Afatinib Plus Cetuximab Versus Afatinib Alone for First-Line Treatment of EGFR-Mutant Non-Small-Cell Lung Cancer: Final Results From SWOG S1403. Journal Of Clinical Oncology 2020, 38: 4076-4085. PMID: 33021871, PMCID: PMC7768342, DOI: 10.1200/jco.20.01149.Peer-Reviewed Original ResearchConceptsProgression-free survivalLung cancerMutant NSCLCEGFR monoclonal antibody cetuximabSmall cell lung cancerAddition of cetuximabPrimary end pointTyrosine kinase inhibitor afatinibCell lung cancerEGFR-Mutant NonCombination of afatinibMonoclonal antibody cetuximabAdvanced diseaseAdverse eventsOverall survivalMulticenter trialLine treatmentEGFR-TKIAntibody cetuximabDose reductionInhibitor afatinibInterim analysisCetuximabInsufficient evidencePatients
2019
The EGFR Exon 19 Mutant L747-A750>P Exhibits Distinct Sensitivity to Tyrosine Kinase Inhibitors in Lung Adenocarcinoma
Truini A, Starrett JH, Stewart T, Ashtekar K, Walther Z, Wurtz A, Lu D, Park JH, DeVeaux M, Song X, Gettinger S, Zelterman D, Lemmon MA, Goldberg SB, Politi K. The EGFR Exon 19 Mutant L747-A750>P Exhibits Distinct Sensitivity to Tyrosine Kinase Inhibitors in Lung Adenocarcinoma. Clinical Cancer Research 2019, 25: 6382-6391. PMID: 31182434, PMCID: PMC6825535, DOI: 10.1158/1078-0432.ccr-19-0780.Peer-Reviewed Original ResearchEGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer
Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, Liu Z, Henick BS, Wurtz A, Cai G, Plodkowski AJ, Long NM, Halpenny DF, Killam J, Oliva I, Schultz N, Riely GJ, Arcila ME, Ladanyi M, Zelterman D, Herbst RS, Goldberg SB, Awad MM, Garon EB, Gettinger S, Hellmann MD, Politi K. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Annals Of Oncology 2019, 30: 1311-1320. PMID: 31086949, PMCID: PMC6683857, DOI: 10.1093/annonc/mdz141.Peer-Reviewed Original ResearchMeSH KeywordsAgedAllelesAntineoplastic Agents, ImmunologicalB7-H1 AntigenBiomarkers, TumorCarcinoma, Non-Small-Cell LungDrug Resistance, NeoplasmErbB ReceptorsFemaleGenetic HeterogeneityHumansLungLung NeoplasmsMaleMiddle AgedMutationProgrammed Cell Death 1 ReceptorProgression-Free SurvivalRetrospective StudiesTobacco SmokingConceptsEGFR-mutant tumorsMemorial Sloan-Kettering Cancer CenterYale Cancer CenterImmune checkpoint inhibitorsPD-L1 expressionImmune checkpoint blockadeTumor mutation burdenCancer CenterLung tumorsCheckpoint blockadeEGFR mutant lung tumorsMutant tumorsCheckpoint inhibitorsLung cancerMutation burdenImmune checkpoint blockade treatmentLow tumor mutation burdenDana-Farber Cancer InstituteEGFR wild-type lung cancersCheckpoint blockade treatmentCell lung cancerEGFR mutation subtypesSimilar smoking historyCell death 1Lung cancer cases
2018
EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes
Marcoux N, Gettinger SN, O’Kane G, Arbour KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi PD, del Prete S, Wurtz A, Farago AF, Dias-Santagata D, Mino-Kenudson M, Reckamp KL, Yu HA, Wakelee HA, Shepherd FA, Piotrowska Z, Sequist LV. EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. Journal Of Clinical Oncology 2018, 37: 278-285. PMID: 30550363, PMCID: PMC7001776, DOI: 10.1200/jco.18.01585.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinoma of LungAdultAgedAged, 80 and overAntineoplastic Combined Chemotherapy ProtocolsBiomarkers, TumorCarcinoma, Non-Small-Cell LungClass I Phosphatidylinositol 3-KinasesErbB ReceptorsFemaleGenetic Predisposition to DiseaseHumansLung NeoplasmsMaleMiddle AgedMutationNeoplasm GradingNorth AmericaPhenotypeRetinoblastoma Binding ProteinsRetrospective StudiesSmall Cell Lung CarcinomaTime FactorsTreatment OutcomeTumor Suppressor Protein p53Ubiquitin-Protein LigasesConceptsNon-small cell lung cancerSmall cell lung cancerEGFR-mutant non-small cell lung cancerSCLC transformationLung cancerNeuroendocrine carcinomaEGFR mutationsDe novo small cell lung cancersInitial lung cancer diagnosisHigh-grade neuroendocrine carcinomaEGFR tyrosine kinase inhibitorsT790M positivityMedian overall survivalCell lung cancerTyrosine kinase inhibitorsHigh response rateEGFR-mutant adenocarcinomaLung cancer diagnosisCNS metastasesCheckpoint inhibitorsMedian survivalOverall survivalClinical courseMixed histologyClinical outcomesA dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers
Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W, Zelterman D, Politi K, Kavathas P, Kaech S, Yu X, Zhao H, Schlessinger J, Lifton R, Rimm DL, Chen L, Herbst RS, Schalper KA. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nature Communications 2018, 9: 3196. PMID: 30097571, PMCID: PMC6086912, DOI: 10.1038/s41467-018-05032-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodies, BlockingCarcinogenesisCarcinoma, Non-Small-Cell LungCell ProliferationCytotoxicity, ImmunologicHistocompatibility Antigens Class IHumansLung NeoplasmsLymphocyte ActivationLymphocytes, Tumor-InfiltratingMaleMice, Inbred NODMice, SCIDMutant ProteinsMutationPeptidesPhenotypeProgrammed Cell Death 1 ReceptorReproducibility of ResultsSurvival AnalysisTobaccoConceptsImmune checkpoint blockersCheckpoint blockersQuantitative immunofluorescenceNon-small cell lung carcinoma patientsCell lung carcinoma patientsNon-small cell lung carcinomaPatient-derived xenograft modelsIntratumoral T cellsMultiplexed quantitative immunofluorescencePD-1 blockadeLevels of CD3Lung carcinoma patientsCell lung carcinomaT cell proliferationPre-treatment samplesTIL phenotypeSurvival benefitCarcinoma patientsEffector capacityLung carcinomaT cellsWhole-exome DNA sequencingXenograft modelFavorable responseBlockersEarly Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA
Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, Lee A, Nemati R, Nath SK, Mane SM, Deng Y, Sukumar N, Zelterman D, Boffa DJ, Politi K, Gettinger S, Wilson LD, Herbst RS, Patel AA. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clinical Cancer Research 2018, 24: 1872-1880. PMID: 29330207, PMCID: PMC5899677, DOI: 10.1158/1078-0432.ccr-17-1341.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerImmune checkpoint inhibitorsCtDNA responseCheckpoint inhibitorsCtDNA levelsMetastatic non-small cell lung cancerImmune checkpoint inhibitor therapySuperior progression-free survivalRadiographic tumor sizeCheckpoint inhibitor therapyProgression-free survivalSuperior overall survivalTumor DNA levelsCell lung cancerAllele fractionClin Cancer ResMultigene next-generation sequencingMutant allele fractionTumor cell deathInhibitor therapyOverall survivalRadiographic responseImmunotherapy efficacyImmunotherapy responseMedian time
2017
Continued use of afatinib with the addition of cetuximab after progression on afatinib in patients with EGFR mutation-positive non-small-cell lung cancer and acquired resistance to gefitinib or erlotinib
Horn L, Gettinger S, Camidge DR, Smit EF, Janjigian YY, Miller VA, Pao W, Freiwald M, Fan J, Wang B, Chand VK, Groen HJM. Continued use of afatinib with the addition of cetuximab after progression on afatinib in patients with EGFR mutation-positive non-small-cell lung cancer and acquired resistance to gefitinib or erlotinib. Lung Cancer 2017, 113: 51-58. PMID: 29110849, DOI: 10.1016/j.lungcan.2017.08.014.Peer-Reviewed Original ResearchMeSH KeywordsAdultAfatinibAgedAged, 80 and overAntineoplastic Combined Chemotherapy ProtocolsCarcinoma, Non-Small-Cell LungCetuximabCohort StudiesDiarrheaDisease ProgressionDrug Resistance, NeoplasmErbB ReceptorsErlotinib HydrochlorideExanthemaFemaleGefitinibHumansKaplan-Meier EstimateLung NeoplasmsMaleMiddle AgedMutationQuinazolinesConceptsEGFR mutation-positive NSCLCEpidermal growth factor receptorMutation-positive NSCLCCell lung cancerAdverse eventsAfatinib monotherapyMedian PFSLung cancerDrug-related grade 3/4 adverse eventsFrequent drug-related adverse eventsDrug-related adverse eventsGrade 3/4 adverse eventsAddition of cetuximabIntolerable adverse eventsPhase Ib trialT790M-negative tumorsPercent of patientsPredictable safety profileAfatinib dailyGrowth factor receptorIb trialSafety profileClinical activityDry skinSeparate cohort
2016
PD-1 Axis Inhibitors in EGFR- and ALK-Driven Lung Cancer: Lost Cause?
Gettinger S, Politi K. PD-1 Axis Inhibitors in EGFR- and ALK-Driven Lung Cancer: Lost Cause? Clinical Cancer Research 2016, 22: 4539-4541. PMID: 27470969, PMCID: PMC5653962, DOI: 10.1158/1078-0432.ccr-16-1401.Peer-Reviewed Original ResearchOncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells
Forloni M, Gupta R, Nagarajan A, Sun LS, Dong Y, Pirazzoli V, Toki M, Wurtz A, Melnick MA, Kobayashi S, Homer RJ, Rimm DL, Gettinger SJ, Politi K, Dogra SK, Wajapeyee N. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells. Cell Reports 2016, 16: 457-471. PMID: 27346347, PMCID: PMC4945411, DOI: 10.1016/j.celrep.2016.05.087.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAntineoplastic AgentsBrain NeoplasmsCCAAT-Enhancer-Binding ProteinsCell Line, TumorCpG IslandsDNA MethylationDrug Screening Assays, AntitumorErbB ReceptorsGene Expression Regulation, NeoplasticGene SilencingGlioblastomaHumansLung NeoplasmsMAP Kinase Signaling SystemMixed Function OxygenasesMutationOncogenesProtein Kinase InhibitorsProto-Oncogene ProteinsTranscription, GeneticTumor Suppressor ProteinsUp-RegulationConceptsOncogenic epidermal growth factor receptorMethylation-mediated transcriptional silencingEpidermal growth factor receptorTumor suppressorTranscriptional silencingActive DNA demethylationCancer cellsFamily member 1TET1 knockdownDNA demethylaseDNA demethylationTranscription factorsGrowth factor receptorEctopic expressionCytoplasmic localizationGlioblastoma tumor growthLung cancer cellsTET1 expressionFunctional roleSuppressorFactor receptorMember 1TET1SilencingLung cancer samplesImpact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor–Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases
Magnuson WJ, Yeung JT, Guillod PD, Gettinger SN, Yu JB, Chiang VL. Impact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor–Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases. International Journal Of Radiation Oncology • Biology • Physics 2016, 95: 673-679. PMID: 27034176, DOI: 10.1016/j.ijrobp.2016.01.037.Peer-Reviewed Original ResearchConceptsWhole-brain radiation therapyUpfront EGFR-TKIIntracranial progression-free survivalUpfront radiation therapyProgression-free survivalBrain metastasesEGFR-TKI groupEGFR-TKIEGFR-mutant NSCLCOverall survivalRadiation therapyEpidermal Growth Factor Receptor–Mutant NonDisease-specific Graded Prognostic AssessmentUpfront EGFR tyrosine kinase inhibitorsEGFR-TKI resistance mutationSmall cell lung cancerEGFR tyrosine kinase inhibitorsEGFR-TKI useMedian overall survivalSimilar overall survivalUpfront RT groupInferior overall survivalCell lung cancerMutant lung adenocarcinomaEpidermal growth factor receptor
2014
Perfect ALKemy: Optimizing the Use of ALK-Directed Therapies in Lung Cancer
Politi K, Gettinger S. Perfect ALKemy: Optimizing the Use of ALK-Directed Therapies in Lung Cancer. Clinical Cancer Research 2014, 20: 5576-5578. PMID: 25228532, PMCID: PMC4401422, DOI: 10.1158/1078-0432.ccr-14-2306.Commentaries, Editorials and LettersDual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor–Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations
Janjigian YY, Smit EF, Groen HJ, Horn L, Gettinger S, Camidge DR, Riely GJ, Wang B, Fu Y, Chand VK, Miller VA, Pao W. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor–Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations. Cancer Discovery 2014, 4: 1036-1045. PMID: 25074459, PMCID: PMC4155006, DOI: 10.1158/2159-8290.cd-14-0326.Peer-Reviewed Original ResearchConceptsEGFR-mutant lung cancerT790M mutationLung cancerM mutationGrade 3/4 adverse eventsMedian progression-free survivalEGFR T790M mutationErlotinib/gefitinibRobust clinical activityT790M-negative tumorsManageable safety profileObjective response ratePhase Ib studyProgression-free survivalMutant lung cancerGefitinib/erlotinibFirst clinical proofReversible EGFR inhibitorsAdverse eventsMedian durationObjective responseSafety profilePreclinical hypothesisEGFR mutationsClinical activityAcquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1
Pirazzoli V, Nebhan C, Song X, Wurtz A, Walther Z, Cai G, Zhao Z, Jia P, de Stanchina E, Shapiro EM, Gale M, Yin R, Horn L, Carbone DP, Stephens PJ, Miller V, Gettinger S, Pao W, Politi K. Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1. Cell Reports 2014, 7: 999-1008. PMID: 24813888, PMCID: PMC4074596, DOI: 10.1016/j.celrep.2014.04.014.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdenocarcinoma of LungAfatinibAnimalsAntibodies, Monoclonal, HumanizedAntineoplastic Combined Chemotherapy ProtocolsCell Line, TumorCetuximabDrug Resistance, NeoplasmErbB ReceptorsHumansLung NeoplasmsMechanistic Target of Rapamycin Complex 1MiceMice, NudeMice, TransgenicMultiprotein ComplexesMutationQuinazolinesRandom AllocationTOR Serine-Threonine KinasesXenograft Model Antitumor AssaysConceptsTyrosine kinase inhibitorsFirst-generation tyrosine kinase inhibitorEGFR-mutant lung adenocarcinomaLung adenocarcinomaMechanisms of resistanceEGFR antibody cetuximabPotential therapeutic strategyBiopsy specimensAntibody cetuximabDrug combinationsMouse modelTherapeutic strategiesAfatinibAddition of rapamycinCetuximabDual inhibitionAcquired ResistanceKinase inhibitorsGenomic alterationsAdenocarcinomaPatientsActivationGenomic mechanismsDrugsMTORC1 activation
2013
A Clinical Model for Identifying Radiosensitive Tumor Genotypes in Non–Small Cell Lung Cancer
Johung KL, Yao X, Li F, Yu JB, Gettinger SN, Goldberg S, Decker RH, Hess JA, Chiang VL, Contessa JN. A Clinical Model for Identifying Radiosensitive Tumor Genotypes in Non–Small Cell Lung Cancer. Clinical Cancer Research 2013, 19: 5523-5532. PMID: 23897899, DOI: 10.1158/1078-0432.ccr-13-0836.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnaplastic Lymphoma KinaseAntineoplastic AgentsBrain NeoplasmsCarcinoma, Non-Small-Cell LungErbB ReceptorsFemaleGenotypeHumansLung NeoplasmsMaleMiddle AgedMutationProtein Kinase InhibitorsRadiation ToleranceReceptor Protein-Tyrosine KinasesRecurrenceTranslocation, GeneticTumor BurdenConceptsNon-small cell lung cancerCell lung cancerEML4-ALK translocationGamma knife treatmentLocal controlTumor genotypeLung cancerEGFR mutationsCox proportional hazards modelDistant brain controlDistant brain recurrenceGamma knife radiotherapyEGFR kinase domain mutationsSuperior local controlField local controlKRAS mutation statusProportional hazards modelKinase domain mutationsEGF receptorMetastasis sizeBrain recurrenceBrain metastasesField recurrenceClinical outcomesIndependent predictorsIdentification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma
Cai G, Wong R, Chhieng D, Levy GH, Gettinger SN, Herbst RS, Puchalski JT, Homer RJ, Hui P. Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma. Cancer Cytopathology 2013, 121: 500-507. PMID: 23495083, DOI: 10.1002/cncy.21288.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAgedAged, 80 and overAnaplastic Lymphoma KinaseBiomarkers, TumorBone NeoplasmsCytodiagnosisDNA, NeoplasmErbB ReceptorsFeasibility StudiesFemaleGene RearrangementHumansIn Situ Hybridization, FluorescenceLiver NeoplasmsLung NeoplasmsMaleMiddle AgedMutationNeoplasm Recurrence, LocalPrognosisProto-Oncogene ProteinsProto-Oncogene Proteins p21(ras)Ras ProteinsReal-Time Polymerase Chain ReactionReceptor Protein-Tyrosine KinasesSoft Tissue NeoplasmsYoung AdultConceptsALK gene rearrangementMetastatic lung adenocarcinomaEGFR mutationsKRAS mutationsMetastatic tumorsEpidermal growth factor receptorLung adenocarcinomaCytological specimensGene rearrangementsMolecular testsMolecular alterationsKirsten rat sarcoma viral oncogene homolog (KRAS) mutationsALK gene rearrangement analysisAnaplastic lymphoma kinase (ALK) gene rearrangementEGFR T790M mutationRat sarcoma viral oncogene homolog mutationsCases of lungT790M mutationImportant therapeutic implicationsFine needle aspiratesGene rearrangement analysisCell block materialGrowth factor receptorRecurrent lungRecurrent adenocarcinoma
2012
Ultrasensitive Measurement of Hotspot Mutations in Tumor DNA in Blood Using Error-Suppressed Multiplexed Deep Sequencing
Narayan A, Carriero NJ, Gettinger SN, Kluytenaar J, Kozak KR, Yock TI, Muscato NE, Ugarelli P, Decker RH, Patel AA. Ultrasensitive Measurement of Hotspot Mutations in Tumor DNA in Blood Using Error-Suppressed Multiplexed Deep Sequencing. Cancer Research 2012, 72: 3492-3498. PMID: 22581825, PMCID: PMC3426449, DOI: 10.1158/0008-5472.can-11-4037.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerTumor DNATumor DNA levelsCell lung cancerCell-free tumor DNATreatment-associated changesDNA levelsTumor-specific mutationsPractical diagnostic testLung cancerPractical clinical implementationPatient samplesDiagnostic testsHotspot mutationsClinical implementationNext-generation sequencingBloodCancer biomarkersSuccessful useNormal DNAMutationsPatientsDeep sequencing
2011
Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA. Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors. Science Translational Medicine 2011, 3: 75ra26. PMID: 21430269, PMCID: PMC3132801, DOI: 10.1126/scitranslmed.3002003.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerSmall cell lung cancerCell lung cancerLung cancerEpidermal growth factor receptorEGFR mutationsDrug resistanceEGFR inhibitorsDrug-resistant non-small cell lung cancerEGFR T790M mutationEGFR tyrosine kinase inhibitorsMET gene amplificationEGFR inhibitor treatmentT790M mutationTyrosine kinase inhibitorsDrug-resistant tumorsGrowth factor receptorSerial biopsiesSCLC treatmentMechanisms of resistanceHistological evolutionResistant tumorsTumor biopsiesSuch cancersInhibitor treatment
2010
Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer
Sequist LV, Gettinger S, Senzer NN, Martins RG, Jänne PA, Lilenbaum R, Gray JE, Iafrate AJ, Katayama R, Hafeez N, Sweeney J, Walker JR, Fritz C, Ross RW, Grayzel D, Engelman JA, Borger DR, Paez G, Natale R. Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer. Journal Of Clinical Oncology 2010, 28: 4953-4960. PMID: 20940188, PMCID: PMC4676802, DOI: 10.1200/jco.2010.30.8338.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnaplastic Lymphoma KinaseBenzoquinonesCarcinoma, Non-Small-Cell LungErbB ReceptorsFemaleGene RearrangementHSP90 Heat-Shock ProteinsHumansLactams, MacrocyclicLung NeoplasmsMaleMiddle AgedMutationProspective StudiesProtein-Tyrosine KinasesReceptor Protein-Tyrosine KinasesConceptsObjective response rateProgression-free survivalCell lung cancerIPI-504Lung cancerEpidermal growth factor receptor tyrosine kinase inhibitor therapyUnited States cancer centersTyrosine kinase inhibitor therapyState Cancer CenterCommon adverse eventsLiver function abnormalitiesPhase II studyOverall study populationKinase inhibitor therapyHeat shock protein 90 inhibitorNovel heat shock protein 90 inhibitorALK gene rearrangementStable diseaseAdvanced NSCLCAdverse eventsFunction abnormalitiesII studyPartial responseInhibitor therapyPrimary outcome