2023
The viral packaging motor potentiates Kaposi’s sarcoma-associated herpesvirus gene expression late in infection
McCollum C, Didychuk A, Liu D, Murray-Nerger L, Cristea I, Glaunsinger B. The viral packaging motor potentiates Kaposi’s sarcoma-associated herpesvirus gene expression late in infection. PLOS Pathogens 2023, 19: e1011163. PMID: 37068108, PMCID: PMC10138851, DOI: 10.1371/journal.ppat.1011163.Peer-Reviewed Original ResearchConceptsKaposi's sarcoma-associated herpesvirusGene expressionViral transcriptionKSHV gene expressionCellular RNA polymerasesHerpesvirus gene expressionTranscriptional activator proteinViral DNA packaging motorsPotential gene expressionTranscriptional activation complexLate gene expressionDNA packaging motorRNA polymeraseProximity labelingHost transcriptionSiRNA screenSarcoma-associated herpesvirusLate genesTranscription complexLate proteinsCatalytic subunitActivator proteinPackaging motorORF29Viral packaging
2022
DNA processing by the Kaposi's sarcoma-associated herpesvirus alkaline exonuclease SOX contributes to viral gene expression and infectious virion production
Hartenian E, Mendez A, Didychuk A, Khosla S, Glaunsinger B. DNA processing by the Kaposi's sarcoma-associated herpesvirus alkaline exonuclease SOX contributes to viral gene expression and infectious virion production. Nucleic Acids Research 2022, 51: 182-197. PMID: 36537232, PMCID: PMC9841436, DOI: 10.1093/nar/gkac1190.Peer-Reviewed Original ResearchConceptsKaposi's sarcoma-associated herpesvirusAlkaline exonucleaseInfectious virion productionViral gene expressionDNA processingStructure-guided functional analysesGene expressionDNA substrate preferenceVirion productionKingdoms of lifeCleavage of mRNAGammaherpesvirus Kaposi's sarcoma-associated herpesvirusViral DNA processingLifecycles of virusesBacteriophage LSoxS mutantFunctional conservationGenome replicationGenetic conservationSarcoma-associated herpesvirusPhage LSubstrate preferenceDNA bindingHuman gammaherpesviruses Kaposi's sarcoma-associated herpesvirusSOX activityBetter late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses
Dremel S, Didychuk A. Better late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses. Seminars In Cell And Developmental Biology 2022, 146: 57-69. PMID: 36535877, PMCID: PMC10101908, DOI: 10.1016/j.semcdb.2022.12.001.Peer-Reviewed Original ResearchConceptsViral transcriptional activityViral preinitiation complexPol IITranscription of late genesGene transcriptionCellular RNA polymerase IITATA-binding proteinRNA polymerase IIModified TATA boxCis-acting elementsSubfamily of herpesvirusesPolymerase IITATA boxPreinitiation complexConsensus sequenceLate genesTranscriptional activityGene promoterLytic replicationGenesTemporal cascadeTranscriptionViral mimicPolPromoterThe transition phase: preparing to launch a laboratory
McKinley K, Didychuk A, Nicholas D, Termini C. The transition phase: preparing to launch a laboratory. Trends In Biochemical Sciences 2022, 47: 814-818. PMID: 35644775, PMCID: PMC9677455, DOI: 10.1016/j.tibs.2022.05.002.Peer-Reviewed Original ResearchA Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains
Morgens D, Nandakumar D, Didychuk A, Yang K, Glaunsinger B. A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLOS Pathogens 2022, 18: e1010236. PMID: 35041709, PMCID: PMC8797222, DOI: 10.1371/journal.ppat.1010236.Peer-Reviewed Original ResearchConceptsViral DNA replicationKaposi's sarcoma-associated herpesvirusViral genomeDsDNA virusesLate genesDNA replicationTranscriptional activityViral sequencesViral transcriptional activityCatalytic domainIndividual mutantsSgRNA librarySarcoma-associated herpesvirusTiling screensDNA bindingDeep sequencingBase pairsFunctional screeningCut sitePooled screeningTranscriptional modifiersDNA virusesGenomeEssential domainsGene expression
2021
A pentameric protein ring with novel architecture is required for herpesviral packaging
Didychuk A, Gates S, Gardner M, Strong L, Martin A, Glaunsinger B. A pentameric protein ring with novel architecture is required for herpesviral packaging. ELife 2021, 10: e62261. PMID: 33554858, PMCID: PMC7889075, DOI: 10.7554/elife.62261.Peer-Reviewed Original ResearchConceptsViral genomeAccessory factorsBind double-stranded DNAPositively charged central channelContext of KSHV infectionDouble-stranded DNA virusesPositively charged residuesOncogenic herpesvirus Kaposi's sarcoma-associated herpesvirusKaposi's sarcoma-associated herpesvirusDouble-stranded DNASarcoma-associated herpesvirusGenome packagingHomologous proteinsNascent capsidsDNA bindingProtein ringGenomePackaging motorDNA virusesCharged residuesProgeny virionsMolecular motorsCentral channelKSHV infectionMutants
2020
The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription
Castañeda A, Didychuk A, Louder R, McCollum C, Davis Z, Nogales E, Glaunsinger B. The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription. PLOS Pathogens 2020, 16: e1008843. PMID: 32886723, PMCID: PMC7498053, DOI: 10.1371/journal.ppat.1008843.Peer-Reviewed Original ResearchConceptsTATA box-binding proteinRNA polymerase IIN-terminal domainPol IIPolymerase IICellular TATA box binding proteinHost RNA polymerase IIRecruitment of RNA polymerase IIGene transcriptionLate gene transcriptionPol II recruitmentProtein interaction studiesProtein-protein contactsC-terminal domainEukaryotic transcriptionPolymerase recruitmentHuman cytomegalovirusPreinitiation complexHost transcriptionRNA PolLate genesMicroscopy-based imagingKaposi's sarcoma-associated virusTranscriptional activityPromoter recognitionConserved CxnC Motifs in Kaposi’s Sarcoma-Associated Herpesvirus ORF66 Are Required for Viral Late Gene Expression and Are Essential for Its Interaction with ORF34
Didychuk A, Castañeda A, Kushnir L, Huang C, Glaunsinger B. Conserved CxnC Motifs in Kaposi’s Sarcoma-Associated Herpesvirus ORF66 Are Required for Viral Late Gene Expression and Are Essential for Its Interaction with ORF34. Journal Of Virology 2020, 94: 10.1128/jvi.01299-19. PMID: 31578296, PMCID: PMC6955276, DOI: 10.1128/jvi.01299-19.Peer-Reviewed Original ResearchConceptsViral preinitiation complexKaposi's sarcoma-associated herpesvirusC-terminal domainCysteine-rich motifHost transcription machineryPreinitiation complexGene promoterTranscription machinerySarcoma-associated herpesvirusLate genesGene transcriptionViral late gene expressionZinc finger motifsLate gene transcriptionSequence-specific bindingTranscriptional regulatory activityLate gene expressionLate gene promotersInfectious virionsProduction of capsid proteinsRelease of infectious virionsViral replication cycleFinger motifPromoter occupancySequence-specific
2018
Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA
Montemayor E, Didychuk A, Yake A, Sidhu G, Brow D, Butcher S. Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA. Acta Crystallographica Section A: Foundations And Advances 2018, 74: a359-a359. DOI: 10.1107/s0108767318096411.Peer-Reviewed Original ResearchArchitecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA
Montemayor E, Didychuk A, Yake A, Sidhu G, Brow D, Butcher S. Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA. Nature Communications 2018, 9: 1749. PMID: 29717126, PMCID: PMC5931518, DOI: 10.1038/s41467-018-04145-4.Peer-Reviewed Original ResearchConceptsU6 small nuclear RNASmall nuclear RNAPre-mRNAU6 snRNPPre-mRNA substratePrecursor messenger RNAProtein-protein contactsC-terminal regionSaccharomyces cerevisiaeHeteroheptameric ringMature mRNAActive siteU6 snRNPsMRNA decayNuclear RNAPost-transcriptionallySpliceosomeLsm2Prp24SnRNPMessenger RNARNAMRNAIntronLSm8The life of U6 small nuclear RNA, from cradle to grave
Didychuk A, Butcher S, Brow D. The life of U6 small nuclear RNA, from cradle to grave. RNA 2018, 24: 437-460. PMID: 29367453, PMCID: PMC5855946, DOI: 10.1261/rna.065136.117.Peer-Reviewed Original ResearchConceptsU6 small nuclear RNASmall nuclear RNAPre-mRNANuclear RNAProcess of RNA splicingCatalyzes intron removalEukaryotic gene expressionPre-mRNA substrateUridine-rich small nuclear RNAsRemoval of intronsPrecursor messenger RNACryo-EM structureSplicing cycleNoncoding transcriptsCatalytic coreProtein partnersRNA splicingIntron removalSplice siteGenetic dataMacromolecular machinesSpliceosomeGene expressionSplicingConformational changes
2017
Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities
Didychuk A, Montemayor E, Carrocci T, DeLaitsch A, Lucarelli S, Westler W, Brow D, Hoskins A, Butcher S. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nature Communications 2017, 8: 497. PMID: 28887445, PMCID: PMC5591277, DOI: 10.1038/s41467-017-00484-w.Peer-Reviewed Original ResearchMeSH KeywordsCatalytic DomainCrystallography, X-RayEvolution, MolecularGenetic VariationHumansModels, MolecularPhosphoric Diester HydrolasesProtein BindingProtein DomainsRibonucleoprotein, U4-U6 Small NuclearRNA, Small NuclearSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSubstrate SpecificityConceptsU6 snRNP assemblySmall nuclear ribonucleoproteinSnRNP assemblyCognate RNA-binding proteinsTerminal 3'-phosphateU6 small nuclear ribonucleoproteinsRNA-binding proteinsAnti-cooperative interactionsCyclic phosphodiesterase activitySpliceosome assemblyU6 RNAHuman orthologNuclear ribonucleoproteinUSB1SpliceosomeYeastProteinPhosphodiesterase activityAntagonist proteinComplex seriesAssemblyPrp24LHP1OrthologsSnRNAStructural Characterization of the Recognition of U6 snRNA by the Yeast U6 Biogenesis Protein Usb1
DeLaitsch A, Didychuk A, Montemayor E, Larson M, Lucarelli S, Butcher S. Structural Characterization of the Recognition of U6 snRNA by the Yeast U6 Biogenesis Protein Usb1. The FASEB Journal 2017, 31 DOI: 10.1096/fasebj.31.1_supplement.910.8.Peer-Reviewed Original ResearchU6 snRNAU6 RNAMutation of active site residuesTerminal phosphateDenaturing polyacrylamide gel electrophoresisBinding of RNACatalytically active spliceosomePrecursor messenger RNANon-coding intronsActive site residuesPolyacrylamide gel electrophoresisSnRNA biogenesisExoribonuclease activityS. cerevisiaeSequence identityActive spliceosomeEukaryotic cellsConserved UFluorescent RNADiffracted X-raysU6 snRNPActive siteProtein complexesSite residuesUSB1Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core
Montemayor E, Didychuk A, Liao H, Hu P, Brow D, Butcher S. Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core. Acta Crystallographica Section D, Structural Biology 2017, 73: 1-8. PMID: 28045380, PMCID: PMC5331471, DOI: 10.1107/s2059798316018222.Peer-Reviewed Original ResearchInternal stem-loopRNA recognition motifSmall nuclear ribonucleoproteinU6 internal stem-loopSplicing of precursor messenger RNAU6 small nuclear RNAProtein-RNA interfacesU6 small nuclear ribonucleoproteinsPrecursor messenger RNASmall nuclear RNAGel shift assaysStem-loopRibonucleoprotein complexCrystal structureGenetic dataNuclear ribonucleoproteinNuclear RNAConformational plasticityWild-typePrp24RNASpliceosomeElectrophoretic mobilityMessenger RNARibonucleoprotein
2016
A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex
Rodgers M, Didychuk A, Butcher S, Brow D, Hoskins A. A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex. Nucleic Acids Research 2016, 44: 10912-10928. PMID: 27484481, PMCID: PMC5159527, DOI: 10.1093/nar/gkw686.Peer-Reviewed Original ResearchConceptsSmall nuclear RNATri-snRNPU4/U6 unwindingU6 small nuclear RNAImpairs yeast growthSpliceosome active siteU4/U6 di-snRNPSmall nuclear ribonucleoproteinTri-snRNP assemblySpliceosome formationStrand invasionDi-snRNPYeast growthNuclear ribonucleoproteinNuclear RNARNA complexResonance energy transferSpliceosomeRNA duplexesForster resonance energy transferConformational rearrangementsDNA oligonucleotidesStem IIUnwindingU4/U6
2015
Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly
Didychuk A, Montemayor E, Brow D, Butcher S. Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly. Nucleic Acids Research 2015, 44: 1398-1410. PMID: 26673715, PMCID: PMC4756825, DOI: 10.1093/nar/gkv1374.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding, CompetitiveKineticsModels, MolecularMolecular Sequence DataMutationNucleic Acid ConformationProtein BindingProtein Structure, TertiaryRibonucleoprotein, U4-U6 Small NuclearRibonucleoproteins, Small NuclearRNA, FungalRNA, Small NuclearSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsU6 RNADi-snRNPRemodeling of RNA structureAnnealing in vitroTri-snRNP complexLarge-scale remodelingStable ternary complexRNA bindingRNA structureRibonucleoprotein complexU6 snRNPU6 snRNABase pairsPrp24RNATernary complexU4/U6Electropositive characterRate enhancementAssemblyStructural requirementsSnRNASnRNPLsm2Annealing rateStructural Analysis of Multi-Helical RNAs by NMR–SAXS/WAXS: Application to the U4/U6 di-snRNA
Cornilescu G, Didychuk A, Rodgers M, Michael L, Burke J, Montemayor E, Hoskins A, Butcher S. Structural Analysis of Multi-Helical RNAs by NMR–SAXS/WAXS: Application to the U4/U6 di-snRNA. Journal Of Molecular Biology 2015, 428: 777-789. PMID: 26655855, PMCID: PMC4790120, DOI: 10.1016/j.jmb.2015.11.026.Peer-Reviewed Original ResearchConceptsU4/U6 di-snRNAScattering dataTri-snRNPAnalysis of RNA structureCryo-electron microscopy structureResonance energy transfer dataX-ray scattering dataMagnetic susceptibility anisotropyRNA structureAssembled spliceosomeRibonucleoprotein complexTertiary interactionsU4/U6Energy transfer dataAlignment mediaSusceptibility anisotropyCryo-electronAlignment tensorStructural investigationsRNAX-rayNucleic acidsStructural analysisWAXS dataY-shaped structureU4 snRNA Regulates Formation of the U6 Telestem within the U4/U6 Di-snRNA
Rodgers M, Didychuk A, Butcher S, Brow D, Hoskins A. U4 snRNA Regulates Formation of the U6 Telestem within the U4/U6 Di-snRNA. Biophysical Journal 2015, 108: 238a. DOI: 10.1016/j.bpj.2014.11.1315.Peer-Reviewed Original Research
2012
Structure of Pisum sativum Rubisco with bound ribulose 1,5‐bisphosphate
Loewen P, Didychuk A, Switala J, Perez-Luque R, Fita I, Loewen M. Structure of Pisum sativum Rubisco with bound ribulose 1,5‐bisphosphate. Acta Crystallographica Section F: Structural Biology Communications 2012, 69: 10-14. PMID: 23295478, PMCID: PMC3539695, DOI: 10.1107/s1744309112047549.Peer-Reviewed Original ResearchConceptsRibulose 1,5-bisphosphateRibulose-1,5-bisphosphate carboxylase/oxygenaseSubstrate ribulose 1,5-bisphosphateHanging-drop vapor diffusionSmall subunit sequenceRibulose-1,5-bisphosphateDiffraction-quality crystalsActive-site conformationActive siteRubisco structureRubiscoClosed conformationHexadecameric complexPisum sativumA-resolutionQuaternary structureGarden peaVapor diffusionX-ray diffraction dataPulse cropsCarboxylase/oxygenaseLys201ConformationSitesDiffraction dataA Chemical Proteomics Approach toward Identification of Human Abscisic Acid-Binding Proteins
Kharenko O, Polichuk D, Didychuk A, Loewen M. A Chemical Proteomics Approach toward Identification of Human Abscisic Acid-Binding Proteins. Biophysical Journal 2012, 102: 464a. DOI: 10.1016/j.bpj.2011.11.2544.Peer-Reviewed Original Research