2023
Sequence-independent activity of a predicted long disordered segment of the human papillomavirus type 16 L2 capsid protein during virus entry
Oh C, Buckley P, Choi J, Hierro A, DiMaio D. Sequence-independent activity of a predicted long disordered segment of the human papillomavirus type 16 L2 capsid protein during virus entry. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2307721120. PMID: 37819982, PMCID: PMC10589650, DOI: 10.1073/pnas.2307721120.Peer-Reviewed Original ResearchConceptsAmino acid sequenceAcid sequenceProtein segmentsVirus traffickingUnrelated cellular proteinsSequence-independent mannerIntracellular virus traffickingActivity of proteinsAmino acid segmentComplex biological functionsVirus entryTandem arraysProtein functionTrafficking factorsCellular proteinsEndosome membraneBiological functionsHPV16 pseudovirus infectionCellular factorsDiverse sequencesL2 capsid proteins
2020
Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry
Zhang P, Moreno R, Lambert PF, DiMaio D. Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 6121-6128. PMID: 32123072, PMCID: PMC7084110, DOI: 10.1073/pnas.1917748117.Peer-Reviewed Original ResearchConceptsEssential protein-protein interactionsCellular protein complexesProtein-protein interactionsIntracellular virus traffickingRetrograde transport pathwaySites of replicationCell-penetrating sequenceProtein complexesCellular proteinsVirus replicationHPV16 pseudovirus infectionVirus traffickingL2 capsid proteinsAspects of infectionCapsid proteinHPV entryViral genomeViral proteinsIncoming virionsViral componentsHuman papillomavirus infectionProteinAntiviral targetDose-dependent blockVirus entry