2021
Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer
Keenan TE, Guerriero JL, Barroso-Sousa R, Li T, O’Meara T, Giobbie-Hurder A, Tayob N, Hu J, Severgnini M, Agudo J, Vaz-Luis I, Anderson L, Attaya V, Park J, Conway J, He MX, Reardon B, Shannon E, Wulf G, Spring LM, Jeselsohn R, Krop I, Lin NU, Partridge A, Winer EP, Mittendorf EA, Liu D, Van Allen EM, Tolaney SM. Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer. Nature Communications 2021, 12: 5563. PMID: 34548479, PMCID: PMC8455578, DOI: 10.1038/s41467-021-25769-z.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntibodies, Monoclonal, HumanizedAntigen PresentationAntineoplastic Combined Chemotherapy ProtocolsB7-H1 AntigenBreast NeoplasmsCytokinesDrug Resistance, NeoplasmEstrogensFemaleFuransGene Expression ProfilingGenetic HeterogeneityGenome, HumanGenomicsHumansImmune Checkpoint InhibitorsKetonesLymphocytes, Tumor-InfiltratingMaleMiddle AgedMutationNeoplasm MetastasisReceptors, EstrogenReceptors, ProgesteroneSignal TransductionSurvival RateTreatment OutcomeConceptsImmune checkpoint inhibitorsBreast cancerHormone receptor-positive metastatic breast cancerHormone receptor-positive breast cancerFinal overall survival resultsRandomized phase 2 trialReceptor-positive breast cancerMinimal therapeutic effectPhase 2 trialMetastatic breast cancerOverall survival resultsPre-treatment tumorsCheckpoint inhibitorsCytokine changesICI responseCombination therapyImmune infiltrationImmunoregulatory cytokinesSurvival resultsAntigen presentationTherapeutic effectTherapeutic validationCancerMolecular correlatesTumor heterogeneity
2017
CDK4/6 inhibition triggers anti-tumour immunity
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, McAllister SS, Zhao JJ. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548: 471-475. PMID: 28813415, PMCID: PMC5570667, DOI: 10.1038/nature23465.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationBiological MimicryBreast NeoplasmsCell Cycle CheckpointsCell Line, TumorCell ProliferationCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Disease Models, AnimalFemaleHumansInterferonsMicePhosphorylationProtein Kinase InhibitorsRepressor ProteinsRNA, Double-StrandedSignal TransductionT-Lymphocytes, RegulatoryTranscriptomeViruses
2016
PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity
Incio J, Tam J, Rahbari NN, Suboj P, McManus DT, Chin SM, Vardam TD, Batista A, Babykutty S, Jung K, Khachatryan A, Hato T, Ligibel JA, Krop IE, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Shibuya M, Carmeliet P, Soares R, Duda DG, Jain RK, Fukumura D. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity. Clinical Cancer Research 2016, 22: 2993-3004. PMID: 26861455, PMCID: PMC4911258, DOI: 10.1158/1078-0432.ccr-15-1839.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsDiet, High-FatFemaleGlucoseHumansHypoglycemic AgentsMacrophagesMetforminMiceMice, Inbred C57BLMice, KnockoutMice, ObeseNeovascularization, PathologicObesityPancreatic NeoplasmsPlacenta Growth FactorPrognosisSignal TransductionVascular Endothelial Growth Factor Receptor-1ConceptsMouse modelTumor progressionTumor-associated macrophage recruitmentDiet-induced obese mouse modelTumor angiogenesisVEGFR-1Breast cancer mouse modelRole of PlGFBreast cancer patientsTumor immune microenvironmentObese mouse modelPlacental growth factorWild-type C57BL/6Addition of metforminHigh-fat dietTumor immune environmentCancer mouse modelReceptors VEGFR-1Breast cancer modelBreast cancer progressionAntitumor immunityTAM infiltrationImmune environmentInsulin levelsImmune microenvironment
2015
The Evolving Landscape of HER2 Targeting in Breast Cancer
Moasser MM, Krop IE. The Evolving Landscape of HER2 Targeting in Breast Cancer. JAMA Oncology 2015, 1: 1154. PMID: 26204261, DOI: 10.1001/jamaoncol.2015.2286.Peer-Reviewed Original ResearchConceptsTreatment of HER2Breast cancerImmunologic effectorsHER2 targetingSubstantial single-agent activityHuman epidermal growth factor receptor 2Epidermal growth factor receptor 2Value of HER2Lines of therapyGrowth factor receptor 2Single-agent activityLate-stage diseaseStage of diseaseUseful predictive biomarkerHER2 inhibitor lapatinibFactor receptor 2Variety of cytotoxicModest efficacyTrastuzumab resistancePredictive biomarkersCell surface expressionImmunologic activityInhibitor lapatinibReceptor 2Advanced stagePI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers
Wang Q, Liu P, Spangle JM, Von T, Roberts TM, Lin NU, Krop IE, Winer EP, Zhao JJ. PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 2015, 35: 3607-3612. PMID: 26500061, PMCID: PMC4846581, DOI: 10.1038/onc.2015.406.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCell Line, TumorCell SurvivalClass I Phosphatidylinositol 3-KinasesDrug Resistance, NeoplasmFemaleHumansLapatinibMammary Neoplasms, ExperimentalMice, KnockoutMolecular Targeted TherapyPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsProtein Kinase InhibitorsProto-Oncogene Proteins c-aktPTEN PhosphohydrolaseQuinazolinesReceptor, ErbB-2Signal TransductionThiazolesTumor BurdenXenograft Model Antitumor AssaysConceptsBreast tumorsP110β inhibitorsHuman epidermal growth factor receptor 2 (HER2) amplificationP110α inhibitionPTEN lossInhibition of HER2Treatment of HER2Human cancersPI3K pathway activationPTEN-deficient breast cancersGenetic mouse modelsPI3K/Akt signalingPTEN-deficient tumorsPI3K/AktDual HER2Therapeutic regimenHER2 inhibitionPIK3CA mutationsTumor regressionBreast cancerMouse modelXenograft modelHER2Null tumorsHER2 activation
2013
Preclinical and Clinical Studies of Gamma Secretase Inhibitors with Docetaxel on Human Breast Tumors
Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, Froehlich AM, Paranilam J, Hayes DF, Wicha MS, Chang JC. Preclinical and Clinical Studies of Gamma Secretase Inhibitors with Docetaxel on Human Breast Tumors. Clinical Cancer Research 2013, 19: 1512-1524. PMID: 23340294, PMCID: PMC3602220, DOI: 10.1158/1078-0432.ccr-11-3326.Peer-Reviewed Original ResearchConceptsBreast cancer stem cellsGamma-secretase inhibitorsAdvanced breast cancerClinical trialsBreast cancerSecretase inhibitorsMaximum-tolerated doseEfficacy of docetaxelSerial tumor biopsiesNotch pathwayTumors of patientsDoses of MKConcurrent clinical trialsHuman breast tumorsNotch pathway inhibitorsCancer stem cellsManageable toxicityTumorgraft modelsDocetaxel treatmentBCSC markersSerial biopsiesConventional therapyPreclinical dataClinical studiesExperimental therapiesBeyond trastuzumab and lapatinib: new options for HER2-positive breast cancer .
Zardavas D, Cameron D, Krop I, Piccart M. Beyond trastuzumab and lapatinib: new options for HER2-positive breast cancer . American Society Of Clinical Oncology Educational Book 2013, 33: e2-e11. PMID: 23714441, DOI: 10.1200/edbook_am.2013.33.e2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, Monoclonal, HumanizedAntineoplastic AgentsBreast NeoplasmsChemotherapy, AdjuvantDrug Resistance, NeoplasmFemaleHumansLapatinibMolecular Targeted TherapyNeoadjuvant TherapyProtein Kinase InhibitorsQuinazolinesReceptor, ErbB-2Signal TransductionTrastuzumabTreatment OutcomeConceptsHER2-positive breast cancerDual HER2 blockadeAntibody-drug conjugatesHER2 blockadeBreast cancerMetastatic settingClinical trialsAnti-HER2 resistanceAnti-HER2 agentsLarge randomized trialsHER2-targeted agentsNew treatment optionsAggressive biologic behaviorMajor clinical issueImproved treatment outcomesNew therapeutic avenuesDevelopment of agentsAdjuvant settingNeoadjuvant settingAdvanced diseaseTrastuzumab-DM1Randomized trialsTreatment optionsBiologic rationaleHER2 inhibition
2010
Disruption of Laminin-Integrin-CD151-Focal Adhesion Kinase Axis Sensitizes Breast Cancer Cells to ErbB2 Antagonists
Yang XH, Flores LM, Li Q, Zhou P, Xu F, Krop IE, Hemler ME. Disruption of Laminin-Integrin-CD151-Focal Adhesion Kinase Axis Sensitizes Breast Cancer Cells to ErbB2 Antagonists. Cancer Research 2010, 70: 2256-2263. PMID: 20197472, PMCID: PMC3310185, DOI: 10.1158/0008-5472.can-09-4032.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedAntigens, CDAntineoplastic AgentsBreast NeoplasmsCell Adhesion MoleculesCell Line, TumorDrug SynergismEnzyme ActivationFocal Adhesion Protein-Tyrosine KinasesHumansIntegrin alpha3beta1Integrin alpha6beta4LapatinibProtein Kinase InhibitorsQuinazolinesReceptor, ErbB-2Signal TransductionTetraspanin 24TrastuzumabConceptsAnti-ErbB2 agentsBreast cancer cellsHuman ErbB2Cancer cellsSensitizes breast cancer cellsTetraspanin protein CD151Mammary tumor cellsFocal adhesion kinaseLaminin-5ErbB2 antagonistTrastuzumab treatmentBreast cancerLaminin-binding integrinsDrug resistanceTumor cellsCD151 knockdownLaminin-integrinErbB2TrastuzumabCancerCD151CellsTreatmentKnockdownAgents
2008
Short Preoperative Treatment With Erlotinib Inhibits Tumor Cell Proliferation in Hormone Receptor–Positive Breast Cancers
Guix M, de Matos Granja N, Meszoely I, Adkins TB, Wieman BM, Frierson KE, Sanchez V, Sanders ME, Grau AM, Mayer IA, Pestano G, Shyr Y, Muthuswamy S, Calvo B, Krontiras H, Krop IE, Kelley MC, Arteaga CL. Short Preoperative Treatment With Erlotinib Inhibits Tumor Cell Proliferation in Hormone Receptor–Positive Breast Cancers. Journal Of Clinical Oncology 2008, 26: 897-906. PMID: 18180460, DOI: 10.1200/jco.2007.13.5939.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnimalsAntineoplastic AgentsBiomarkers, TumorBreast NeoplasmsCell ProliferationChemotherapy, AdjuvantErbB ReceptorsErlotinib HydrochlorideFemaleHumansImmunohistochemistryIn Situ Nick-End LabelingKi-67 AntigenMiceMice, NudeMiddle AgedNeoadjuvant TherapyNeoplasm StagingNeoplasms, Hormone-DependentProtein Kinase InhibitorsProtein-Tyrosine KinasesQuinazolinesReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneSignal TransductionTandem Mass SpectrometryTreatment OutcomeXenograft Model Antitumor AssaysConceptsTumor cell proliferationBreast cancerPreoperative treatmentCell proliferationHormone receptor-positive breast cancerP-S6P-AktEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinibHormone receptor-positive cancersReceptor-positive breast cancerHuman epidermal growth factor receptor 2Epidermal growth factor receptor 2ER-positive breast cancerP-EGFRTyrosine kinase inhibitor erlotinibTriple-negative breast cancerP-MAPKImmediate preoperative periodUntreated breast cancerGrowth factor receptor 2Day of surgeryInvasive breast cancerReceptor-positive cancersTriple-negative cancersKinase inhibitor erlotinib
2006
Chemokine signaling in gliomas: Prognostic factor, Therapeutic target or both?
Krop IE. Chemokine signaling in gliomas: Prognostic factor, Therapeutic target or both? Cancer Biology & Therapy 2006, 5: 1039-1041. PMID: 16931903, DOI: 10.4161/cbt.5.8.3021.Peer-Reviewed Original Research
2005
HIN-1, an Inhibitor of Cell Growth, Invasion, and AKT Activation
Krop I, Parker MT, Bloushtain-Qimron N, Porter D, Gelman R, Sasaki H, Maurer M, Terry MB, Parsons R, Polyak K. HIN-1, an Inhibitor of Cell Growth, Invasion, and AKT Activation. Cancer Research 2005, 65: 9659-9669. PMID: 16266985, DOI: 10.1158/0008-5472.can-05-1663.Peer-Reviewed Original ResearchConceptsTumor suppressor functionHIN-1Suppressor functionMitogen-induced phosphorylationCell growthPotential tumor suppressor functionAnchorage-independent cell growthCell cycle reentryActivation of AktCell cycle arrestActivates AktRetinoblastoma proteinHIN-1 geneGrowth arrestAkt activationRb phosphorylationApparent cell cycle arrestLigand-binding studiesCell migrationCycle arrestPhosphorylationAktEpithelial cellsProteinPotent inhibitor