Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMxÂź Digital Spatial Profiler
Bergholtz H, Carter JM, Cesano A, Cheang MCU, Church SE, Divakar P, Fuhrman CA, Goel S, Gong J, Guerriero JL, Hoang ML, Hwang ES, Kuasne H, Lee J, Liang Y, Mittendorf EA, Perez J, Prat A, Pusztai L, Reeves JW, Riazalhosseini Y, Richer JK, Sahin Ă, Sato H, Schlam I, SĂžrlie T, Stover DG, Swain SM, Swarbrick A, Thompson EA, Tolaney SM, Warren SE, Consortium O. Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMxÂź Digital Spatial Profiler. Cancers 2021, 13: 4456. PMID: 34503266, PMCID: PMC8431590, DOI: 10.3390/cancers13174456.Peer-Reviewed Original ResearchWhole transcriptome levelDigital Spatial ProfilerSpatial profilingTranscriptome levelRNA profilingRNA transcriptsTumor microenvironmentMolecular diversityProtein profilingCancer researchIntegration of datasetsGeoMx Digital Spatial ProfilerProfilingCell populationsMouse samplesBiomarker discoveryBreast tumor microenvironmentBreast Cancer ConsortiumCancer researchers
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply