2017
FFAR2‐FFAR3 receptor heteromerization modulates short‐chain fatty acid sensing
Ang Z, Xiong D, Wu M, Ding JL. FFAR2‐FFAR3 receptor heteromerization modulates short‐chain fatty acid sensing. The FASEB Journal 2017, 32: 289-303. PMID: 28883043, PMCID: PMC5731126, DOI: 10.1096/fj.201700252rr.Peer-Reviewed Original ResearchMeSH KeywordsBeta-Arrestin 2Calcium SignalingColitisCyclic AMPFatty Acids, VolatileFluorescence Resonance Energy TransferHEK293 CellsHumansMacrophagesObesityP38 Mitogen-Activated Protein KinasesPhosphorylationProtein MultimerizationReceptors, Cell SurfaceReceptors, G-Protein-CoupledRecombinant ProteinsConceptsShort-chain fatty acidsBimolecular fluorescence complementationReceptor heteromerizationGut microbiota-derived short-chain fatty acidsMicrobiota-derived short-chain fatty acidsFluorescence complementationFluorescence resonance energy transferHeterologous expressionFree fatty acid receptor 2Mammalian receptorsFatty acidsFatty acid sensingProximity ligationDrug targetsΒ-arrestinHEK293 cellsPrimary human monocytesResonance energy transferNovel pathwayCytosolic CaP38 phosphorylationHeteromersInflammatory monocytesReceptor 2Receptor heteromers
2008
Nanobiotechnology and Cell Biology: Micro- and Nanofabricated Surfaces to Investigate Receptor-Mediated Signaling
Torres AJ, Wu M, Holowka D, Baird B. Nanobiotechnology and Cell Biology: Micro- and Nanofabricated Surfaces to Investigate Receptor-Mediated Signaling. Annual Review Of Biophysics 2008, 37: 265-288. PMID: 18573082, DOI: 10.1146/annurev.biophys.36.040306.132651.Peer-Reviewed Original ResearchMeSH KeywordsBiocompatible MaterialsBiotechnologyNanostructuresNanotechnologyReceptors, Cell SurfaceSignal TransductionSurface PropertiesConceptsCell biologySpatial regulationReceptor-mediated signalingCellular processesChemical modification schemesCellular interactionsFluorescence microscopyBiologySignalingCellsRegulationFundamental mechanismsReceptor systemImmune cellsNew informationEngineering toolsReceptorsPhysical environmentNew opportunities