2009
Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells
Agarwal S, Zerillo C, Kolmakova J, Christensen JG, Harris LN, Rimm DL, DiGiovanna MP, Stern DF. Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. British Journal Of Cancer 2009, 100: 941-949. PMID: 19240716, PMCID: PMC2661782, DOI: 10.1038/sj.bjc.6604937.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorEGFR/HER2 inhibitorsNSCLC cell linesDual EGFR/HER2 inhibitorsGrowth factor receptorMET inhibitorsHER2 inhibitorsUse of EGFREGFR tyrosine kinase inhibitorsCell lung cancer cellsFactor receptorMajority of patientsTreatment of NSCLCCell lung carcinomaTyrosine kinase inhibitorsPotential therapeutic advantagesSubset of tumorsLung cancer cellsCell linesCurrent clinical useReceptor TKTumor cell growthHepatocyte growth factor receptorMaximal growth inhibitionImportant molecular targetChapter 1 The Function, Proteolytic Processing, and Histopathology of Met in Cancer
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. Chapter 1 The Function, Proteolytic Processing, and Histopathology of Met in Cancer. Advances In Cancer Research 2009, 103: 1-23. PMID: 19854350, DOI: 10.1016/s0065-230x(09)03001-2.Peer-Reviewed Original ResearchConceptsHepatocyte growth factorExpression of METLocalization of MetClinicopathological characteristicsMET receptor tyrosine kinaseTherapeutic targetCancer typesReceptor tyrosine kinasesCancer treatmentGrowth factorCancer cellsCell proliferationMetSProteolytic processingHistopathologyCancerTyrosine kinaseRecent studiesImproper regulationNuclear localizationAntibodies
2007
Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model
Pozner-Moulis S, Cregger M, Camp RL, Rimm DL. Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model. Laboratory Investigation 2007, 87: 251-260. PMID: 17260003, DOI: 10.1038/labinvest.3700515.Peer-Reviewed Original ResearchConceptsExpression of METPrognostic valueBreast cancerProtein expressionShorter disease-specific survivalDisease-specific survivalInvasive breast cancerHepatocyte growth factor receptorGrowth factor receptorNeck carcinomaAssessment of reproducibilityIntracellular domainTissue microarrayPotential biomarkersCell line controlAntibody validationNuclear MetCancerFactor receptorAntibodiesMetSMet receptorVariable resultsReceptorsCompartmental analysis
2006
Met, the Hepatocyte Growth Factor Receptor, Localizes to the Nucleus in Cells at Low Density
Pozner-Moulis S, Pappas DJ, Rimm DL. Met, the Hepatocyte Growth Factor Receptor, Localizes to the Nucleus in Cells at Low Density. Cancer Research 2006, 66: 7976-7982. PMID: 16912172, DOI: 10.1158/0008-5472.can-05-4335.Peer-Reviewed Original Research
2003
Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer.
Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Research 2003, 63: 1101-5. PMID: 12615728.Peer-Reviewed Original ResearchConceptsHepatocyte growth factor activator inhibitor-1Breast carcinomaSeries of proteasesNode-negative breast cancerHigh-level expressionNode-negative breast carcinomaHGF/MET pathwayIndependent prognostic valueBreast cancer progressionPoor patient outcomesTissue microarray analysisPathway componentsMicroarray analysisExtracellular domainActivator inhibitor-1Expression of HGFOverexpression of METMet receptorHepatocyte growth factorCancer progressionMatriptasePrognostic valueBreast markersPatient followPatient outcomes