2016
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016, 128: 923-933. PMID: 27268089, PMCID: PMC4990855, DOI: 10.1182/blood-2016-01-693705.Peer-Reviewed Original ResearchConceptsMegakaryocyte/erythroid progenitorsComparative expression analysisNovel enrichment strategyMegakaryocyte-erythroid progenitorsPurification strategySingle-cell levelShort hairpin RNAFate decisionsE lineageNovel purification strategyLineage fateLineage commitmentGranulocyte colony-stimulating factor-mobilized peripheral bloodMK lineageExpression analysisE progenitorsErythroid lineageFactor-mobilized peripheral bloodDifferential expressionES cellsErythroid progenitorsMYB knockdownHairpin RNALineagesColony-forming units
2014
Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of Naïve T Cells and Retain Functional Pathogen-Specific Memory T Cells
Bleakley M, Heimfeld S, Jones LA, Turtle C, Krause D, Riddell SR, Shlomchik W. Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of Naïve T Cells and Retain Functional Pathogen-Specific Memory T Cells. Transplantation And Cellular Therapy 2014, 20: 705-716. PMID: 24525279, PMCID: PMC3985542, DOI: 10.1016/j.bbmt.2014.01.032.Peer-Reviewed Original ResearchConceptsPeripheral blood stem cellsHematopoietic cell transplantationMemory T cellsStem cell graftsT cellsCell graftsPathogen-specific memory T cellsPeripheral blood stem cell graftsAllogeneic stem cell graftsBlood stem cell graftsNaïve T cell subsetsAllogeneic hematopoietic cell transplantationFrequent major complicationCentral memory phenotypeT cell subsetsBlood stem cellsNaïve T cellsOpportunistic pathogenCommon opportunistic pathogenStem cellsHost diseaseHCT outcomesEffector cytokinesMajor complicationsMemory phenotype
2012
Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor
Cooper DL, Proytcheva M, Medoff E, Seropian SE, Snyder EL, Krause DS, Wu Y. Successful collection and engraftment of autologous peripheral blood progenitor cells in poorly mobilized patients receiving high‐dose granulocyte colony‐stimulating factor. Journal Of Clinical Apheresis 2012, 27: 235-241. PMID: 22566214, DOI: 10.1002/jca.21232.Peer-Reviewed Original ResearchConceptsHigh-dose G-CSFAutologous HPC transplantationHematopoietic progenitor cellsG-CSFHPC transplantationProgenitor cellsAutologous peripheral blood progenitor cell collectionHigh-dose granulocyte colony-stimulating factorAutologous peripheral blood progenitor cellsRetrospective medical record reviewPeripheral blood progenitor cell collectionPeripheral blood progenitor cellsMedical record reviewGranulocyte-colony stimulating factorGranulocyte colony-stimulating factorBlood progenitor cellsEfficacy of mobilizationProgenitor cell harvestsProgenitor cell collectionColony-stimulating factorPlatelet engraftmentRecord reviewSafety profileGood mobilizersPeripheral blood
2009
Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture
Mahajan MC, Karmakar S, Newburger PE, Krause DS, Weissman SM. Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture. Experimental Hematology 2009, 37: 1143-1156.e3. PMID: 19607874, PMCID: PMC2997688, DOI: 10.1016/j.exphem.2009.07.001.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-GlobinsAntigens, CD34CCCTC-Binding FactorCells, CulturedChromatin Assembly and DisassemblyEnhancer Elements, GeneticErythroid Precursor CellsErythropoiesisErythropoietinGATA1 Transcription FactorGene Expression Regulation, DevelopmentalGlycophorinsHematopoietic Cell Growth FactorsHistonesHumansInsulator ElementsNF-E2 Transcription Factor, p45 SubunitProtein BindingRepressor ProteinsRNA Polymerase IITranscription FactorsConceptsAlpha-globin lociTranscription factor recruitmentChromatin structureGATA-1Transcription factorsErythroid differentiationGene expressionFactor recruitmentPol IIQuantitative polymerase chain reaction analysisAlpha-globin gene expressionKey erythroid transcription factorsErythroid transcription factorsNF-E2Chromatin immunoprecipitation-quantitative polymerase chain reaction analysisAlpha-globin genesUpstream activator sitesBeta-like genesPolymerase chain reaction analysisChain reaction analysisStages of erythropoiesisGlobin promoterDifferent differentiation stagesFactor CTCFHistone modifications
2007
Circulating stem cells in extremely preterm neonates
Bizzarro MJ, Bhandari V, Krause DS, Smith BR, Gross I. Circulating stem cells in extremely preterm neonates. Acta Paediatrica 2007, 96: 521-525. PMID: 17391470, DOI: 10.1111/j.1651-2227.2007.00194.x.Peer-Reviewed Original ResearchConceptsWeeks of lifePreterm neonatesNeonatal morbidityPulmonary functionPremature neonatesGestational agePeripheral bloodInitial CD34Median gestational agePulmonary function testsShort-term outcomesUmbilical cord bloodFunction testsNeonatal demographicsBirth weightCord bloodRespiratory diseaseNeonatesCell countCD34Progenitor cellsInverse correlationWeeksBloodMorbidity
2005
The importance of National Blood Foundation funding
Krause DS. The importance of National Blood Foundation funding. Transfusion 2005, 45: 67s-71s. PMID: 16086791, DOI: 10.1111/j.1537-2995.2005.00541.x.Peer-Reviewed Original Research
2001
Breast tumor contamination of PBSC harvests: tumor depletion by positive selection of CD34+ cells
Burgess J, Mills B, Griffith M, Mansour V, Weaver CH, Schwartzberg LS, Snyder EL, Krause DS, Yanovich S, Prilutskaya M, Umiel T, Moss TJ. Breast tumor contamination of PBSC harvests: tumor depletion by positive selection of CD34+ cells. Cytotherapy 2001, 3: 285-294. PMID: 12171717, DOI: 10.1080/146532401317070925.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, MonoclonalAntigens, CD34BiomarkersBreast NeoplasmsCell CountFemaleHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansImmunohistochemistryImmunomagnetic SeparationLymphocytesMiddle AgedNeoplastic Cells, CirculatingPredictive Value of TestsReproducibility of ResultsConceptsCD34(-) cell fractionsBrCa cellsPBSC harvestsBRCA patientsCell fractionApheresis harvestsAutologous PBSC supportBreast cancer patientsMedian log depletionHighdose chemotherapyPBSC contaminationPBSC supportTumor contaminationCancer patientsICC detectionCell selectionLog depletionPatientsStandard immunocytochemistryImmunomagnetic enrichmentTumor cellsApheresis collectionsTumor depletionCell numberPrevalenceMulti-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell
Krause D, Theise N, Collector M, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis S. Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell. Cell 2001, 105: 369-377. PMID: 11348593, DOI: 10.1016/s0092-8674(01)00328-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Antigens, LyBone Marrow CellsCell LineageCell MovementEpithelial CellsFemaleFluorescent DyesHematopoietic Stem Cell TransplantationHematopoietic Stem CellsHumansImmunohistochemistryIn Situ Hybridization, FluorescenceIntestine, SmallKeratinsLungMaleMembrane ProteinsMiceMice, KnockoutOrganic ChemicalsPulmonary SurfactantsStem CellsY ChromosomeConceptsLong-term repopulationSingle bone marrowMulti-lineage engraftmentAdult bone marrow cellsProperties of HSCHematopoietic stemSecondary hostsGenetic diseasesStem cellsBone marrow cellsExpression increasesDifferentiative capacityBone marrowEpithelial cellsSerial transplantationRare cellsTissue repairMarrow cellsCellsDifferentiationHostSecondary recipientsGI tractPhenotypeMarrowXenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production
Perez L, Rinder H, Wang C, Tracey J, Maun N, Krause D. Xenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production. Blood 2001, 97: 1635-1643. PMID: 11238102, DOI: 10.1182/blood.v97.6.1635.Peer-Reviewed Original ResearchConceptsPeripheral blood stem cellsHuman peripheral blood stem cellsPlatelet productionVivo modelStudy of megakaryocytopoiesisCFU-MKHuman megakaryocytopoiesisImmunodeficient miceBone marrowHuman plateletsExogenous cytokinesNOD/SCID miceHuman hematopoiesisBlood stem cellsHuman cell engraftmentPlatelet developmentNonobese diabetic/Lymphoid lineageStem cellsHuman blood CD34MegakaryocytopoiesisPeripheral bloodCytokine stimulationMurine recipientsThrombin stimulationHematopoietic Stem Cells Can Be CD34+ or CD34-
Donnelly D, Krause D. Hematopoietic Stem Cells Can Be CD34+ or CD34-. Leukemia & Lymphoma 2001, 40: 221-234. PMID: 11426544, DOI: 10.3109/10428190109057921.Peer-Reviewed Original Research
2000
Isolation and flow cytometric analysis of T‐cell‐depleted CD34+ PBPCs
Debelak J, Shlomchik M, Snyder E, Cooper D, Seropian S, McGuirk J, Smith B, Krause D. Isolation and flow cytometric analysis of T‐cell‐depleted CD34+ PBPCs. Transfusion 2000, 40: 1475-1481. PMID: 11134567, DOI: 10.1046/j.1537-2995.2000.40121475.x.Peer-Reviewed Original ResearchRegulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site
Taranenko N, Krause D. Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site. Experimental Hematology 2000, 28: 974-984. PMID: 10989198, DOI: 10.1016/s0301-472x(00)00492-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD34Antigens, NuclearBinding SitesDNADNA HelicasesDNA MethylationDNA ProbesDNA-Binding ProteinsGene Expression RegulationGuanineKu AutoantigenMiceNuclear ProteinsPromoter Regions, GeneticSp1 Transcription FactorTranscription FactorsTranscription, GeneticTransfectionTumor Cells, CulturedUntranslated RegionsConceptsTranscription start sitePromoter activityCD34 promoterStart siteDrosophila S2 cellsHematopoietic cellsTranscription factor bindsDNA binding sitesElectromobility shift assaysSequence-specific mannerS2 cellsTranscriptional regulationMolecular regulationMethylation interferenceDeletion analysisEarly hematopoiesisNuclear proteinsRegulatory regionsFactor bindsShift assaysGene expressionUntranslated regionHematopoietic stemSp1CD34 transcriptionTransplantation of CD34+ peripheral blood cells selected using a fully automated immunomagnetic system in patients with high-risk breast cancer: results of a prospective randomized multicenter clinical trial
Yanovich S, Mitsky P, Cornetta K, Maziarz R, Rosenfeld C, Krause D, Lotz J, Bitran J, Williams S, Preti R, Somlo G, Burtness B, Mills B. Transplantation of CD34+ peripheral blood cells selected using a fully automated immunomagnetic system in patients with high-risk breast cancer: results of a prospective randomized multicenter clinical trial. Bone Marrow Transplantation 2000, 25: 1165-1174. PMID: 10849529, DOI: 10.1038/sj.bmt.1702415.Peer-Reviewed Original ResearchConceptsHigh-risk breast cancer patientsBreast cancer patientsMedian timeCancer patientsIsolated CD34Clinical trialsCell selection systemHematopoietic reconstitutionHigh-risk breast cancerCapacity of CD34Transplantation of CD34Absolute neutrophil countDuration of hospitalizationHigh-dose chemotherapyMulticenter clinical trialBone Marrow Transplantation (2000) 25Incidence of infectionPeripheral blood cellsInter-group differencesProgenitor cell graftsPlatelet engraftmentNeutrophil countCell transplantPlatelet transfusionsPlatelet count
1999
A nuclear factor Y (NFY) site positively regulates the human CD34 stem cell gene.
Radomska H, Satterthwaite A, Taranenko N, Narravula S, Krause D, Tenen D. A nuclear factor Y (NFY) site positively regulates the human CD34 stem cell gene. Blood 1999, 94: 3772-80. PMID: 10572091, DOI: 10.1182/blood.v94.11.3772.423k19_3772_3780.Peer-Reviewed Original ResearchConceptsHuman CD34 geneUntranslated regionCD34 geneC-MybPromoter activityCell-cycle regulated expressionMurine CD34 geneC-Myb binding sitesElectrophoretic mobility shift assaysNuclear factor Y (NF-Y) sitesTranscription factor NFYCCAAT box motifStem cell genesMobility shift assaysOptimal promoter activityReporter gene activityAntibody supershift experimentsEarly hematopoietic cellsTransient transfection experimentsBox motifCombinatorial actionGene activityPromoter functionOligonucleotide competitionCis elementsA phase I study of paclitaxel for mobilization of peripheral blood progenitor cells
Burtness B, Psyrri A, Rose M, D’Andrea E, Staugaard-Hahn C, Henderson-Bakas M, Clark M, Mechanic S, Krause D, Snyder E, Cooper R, Abrantes J, Corringham R, Deisseroth A, Cooper D. A phase I study of paclitaxel for mobilization of peripheral blood progenitor cells. Bone Marrow Transplantation 1999, 23: 311-315. PMID: 10100573, DOI: 10.1038/sj.bmt.1701589.Peer-Reviewed Original ResearchConceptsSchedule of paclitaxelDose escalationH infusionPeripheral blood progenitor cellsDose of paclitaxelPhase I trialBlood progenitor cellsStem cell yieldStem cellsTolerable toxicityI trialInfusion scheduleDose levelsPhase IPaclitaxelDoseProgenitor cellsCells/NeuropathyFilgrastimInfusionEscalation
1998
Normal neutrophil differentiation and secondary granule gene expression in the EML and MPRO cell lines.
Lawson ND, Krause DS, Berliner N. Normal neutrophil differentiation and secondary granule gene expression in the EML and MPRO cell lines. Experimental Hematology 1998, 26: 1178-85. PMID: 9808058.Peer-Reviewed Original ResearchConceptsNeutrophil differentiationDominant-negative retinoic acid receptor alphaCell linesNormal neutrophil differentiationRetinoic acid receptor alphaCD11b/CD18Macrophage colony-stimulating factorDownregulation of CD34Granulocyte/macrophage colony-stimulating factorTrans retinoic acidAcid receptor alphaColony-stimulating factorNeutrophil gelatinaseGranulocytic differentiation programReceptor alphaSerum-free mediumAppropriate cytokinesMyeloid lineageRetinoic acidInduces expressionLeukemic myelopoiesisHL60MyelopoiesisNeutrophilic differentiationDifferentiation programHigh-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer: a randomized multicentre study
Chabannon C, Cornetta K, Lotz J, Rosenfeld C, Shlomchik M, Yanovitch S, Marolleau J, Sledge G, Novakovitch G, Srour E, Burtness B, Camerlo J, Gravis G, Lee-Fischer J, Faucher C, Chabbert I, Krause D, Maraninchi D, Mills B, Kunkel L, Oldham F, Blaise D, Viens P. High-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer: a randomized multicentre study. British Journal Of Cancer 1998, 78: 913-921. PMID: 9764583, PMCID: PMC2063121, DOI: 10.1038/bjc.1998.601.Peer-Reviewed Original ResearchConceptsPoor prognosis breast cancerHigh-dose chemotherapyHaematopoietic recoveryBreast cancerRecombinant human granulocyte colony-stimulating factorBlood cellsRandomized multicentre studyGranulocyte colony-stimulating factorHuman granulocyte colony-stimulating factorPeripheral blood cellsPeripheral blood CD34Peripheral blood progenitorsColony-stimulating factorMobilized blood cellsEpithelial tumor cellsEligible patientsStudy armsMulticentre studyPeripheral bloodConventional chemotherapyStudy groupPatientsChemotherapyBlood CD34CD34CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb.
Krause DS, Mucenski ML, Lawler AM, May WS. CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Experimental Hematology 1998, 26: 1086-92. PMID: 9766450.Peer-Reviewed Original ResearchConceptsC-MybDevelopmental hematopoiesisES cellsPromoter activityHematopoietic cellsD3 embryonic stem cellsStage-specific mannerES cell differentiationEmbryonic stem cellsPrimitive hematopoietic cellsDefinitive hematopoiesisBone marrow stemCell surface glycoproteinBlood islandsEmbryoid bodiesEndothelial cellsTransient transfectionCell differentiationEmbryosStem cellsProgenitor cellsYolk sacHematopoiesisNonhematopoietic cellsCD34 expression
1997
Regulation of CD34 expression in differentiating M1 cells.
Krause DS, Kapadia SU, Raj NB, May WS. Regulation of CD34 expression in differentiating M1 cells. Experimental Hematology 1997, 25: 1051-61. PMID: 9293902.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsAntigens, CD34Base SequenceBinding SitesCell DifferentiationCells, CulturedDNA-Binding ProteinsDown-RegulationGene Expression RegulationGene Expression Regulation, DevelopmentalGene Expression Regulation, NeoplasticHematopoiesisLeukemia, MyeloidMiceMolecular Sequence DataNuclear ProteinsRNA, MessengerTranscription, GeneticConceptsTranscription initiation siteUntranslated regionPromoter activityHematopoietic stemCell type-specific expressionSecondary structureTATA-less promoterPromoter-luciferase reporter constructsFull promoter activityUpstream genomic DNAProgenitor cellsTranslation start siteMature blood cellsType-specific expressionOptimal promoter activityExtensive secondary structureP1 nuclease digestionCell-specific factorsTranscriptional initiationGene regulationTranscription factorsConsensus sitesStart siteRegulatory elementsTATA element
1996
CD34: Structure, Biology, and Clinical Utility
Krause D, Fackler M, Civin C, May W. CD34: Structure, Biology, and Clinical Utility. Blood 1996, 87: 1-13. PMID: 8547630, DOI: 10.1182/blood.v87.1.1.1.Peer-Reviewed Original ResearchAcute DiseaseAmino Acid SequenceAnimalsAntibodies, MonoclonalAntigens, CD34Antigens, NeoplasmBiomarkersCell AdhesionEndothelium, VascularFibroblastsGene Expression RegulationGenesHematopoietic Stem CellsHumansLeukemia, MyeloidMiceMolecular Sequence DataOrgan SpecificityProtein ConformationRNA Splicing