2016
Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer
Varadan V, Gilmore H, Miskimen KL, Tuck D, Parsai S, Awadallah A, Krop IE, Winer EP, Bossuyt V, Somlo G, Abu-Khalaf MM, Fenton MA, Sikov W, Harris L. Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer. Clinical Cancer Research 2016, 22: 3249-3259. PMID: 26842237, PMCID: PMC5439498, DOI: 10.1158/1078-0432.ccr-15-2021.Peer-Reviewed Original ResearchMeSH KeywordsAlbuminsAntineoplastic Agents, ImmunologicalBiomarkers, TumorB-LymphocytesBreast NeoplasmsFemaleGene Expression ProfilingHumansImmunity, InnateLymphocyte ActivationMacrophagesMiddle AgedNeoadjuvant TherapyPaclitaxelProgrammed Cell Death 1 ReceptorReceptor, ErbB-2T-Lymphocytes, Helper-InducerTrastuzumabTreatment OutcomeConceptsPathologic complete responseBreast cancerImmune indicesBrief exposureFollicular helper T (Tfh) cell signatureHER2-positive breast cancerPD-1 positivitySingle-agent trastuzumabTrastuzumab-based therapyT cell activityT-cell signatureImmune cell infiltrationTumor core biopsiesImmune cell activationPreoperative trastuzumabNab-paclitaxelAntitumor immunityImmune signaturesPCR rateComplete responseMulticenter trialPD-1Cell infiltrationCore biopsyIntrinsic subtypesPAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance)
Liu MC, Pitcher BN, Mardis ER, Davies SR, Friedman PN, Snider JE, Vickery TL, Reed JP, DeSchryver K, Singh B, Gradishar WJ, Perez EA, Martino S, Citron ML, Norton L, Winer EP, Hudis CA, Carey LA, Bernard PS, Nielsen TO, Perou CM, Ellis MJ, Barry WT. PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance). Npj Breast Cancer 2016, 2: 15023. PMID: 28691057, PMCID: PMC5501351, DOI: 10.1038/npjbcancer.2015.23.Peer-Reviewed Original ResearchIntrinsic subtypesOverall survivalGene signaturePAM50 gene signatureCox proportional hazards modelIntrinsic breast cancer subtypesPAM50 intrinsic subtypesStandard clinicopathologic factorsMultivariable Cox modelTaxane-based chemotherapyTaxane-based therapyEvaluable subsetProportional hazards modelBreast cancer subtypesBreast cancer prognosisClinical validation studyAdjuvant anthracyclinesCALGB 9741Distant recurrenceClinicopathologic factorsPrognostic valueRecurrence scoreImproved outcomesTreatment benefitClinical covariates
2015
Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib
Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN, Harris LN, Ollila DW, Krop IE, Henry NL, Weckstein DJ, Anders CK, Singh B, Hoadley KA, Iglesia M, Cheang MC, Perou CM, Winer EP, Hudis CA. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. Journal Of Clinical Oncology 2015, 34: 542-549. PMID: 26527775, PMCID: PMC4980567, DOI: 10.1200/jco.2015.62.1268.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsBreast NeoplasmsCarcinomaEstrogen Receptor alphaFemaleGene ExpressionHumansImmunoglobulin GLapatinibMiddle AgedNeoadjuvant TherapyNeoplasm, ResidualPaclitaxelQuinazolinesReceptor, ErbB-2Receptors, EstrogenReceptors, ProgesteroneRNA, MessengerTrastuzumabTreatment OutcomeTumor MicroenvironmentTumor Suppressor Protein p53Young AdultConceptsPathologic complete response rateCALGB 40601Dual therapyIntrinsic subtypesHormone receptor-negative diseaseRandomized phase III trialHuman epidermal growth factor receptor 2End pointHER2-positive breast cancerEpidermal growth factor receptor 2Correlative end pointsDual HER2 blockadeHER2-positive diseaseComplete response ratePrimary end pointPhase III trialsProgression-free survivalReceptor-negative diseaseAddition of lapatinibGrowth factor receptor 2Immune cell signaturesFactor receptor 2Gene expression-based assaysMolecular featuresDual HER2
2014
Predicting response and survival in chemotherapy-treated triple-negative breast cancer
Prat A, Lluch A, Albanell J, Barry WT, Fan C, ChacĂłn JI, Parker JS, Calvo L, Plazaola A, Arcusa A, SeguĂ-Palmer MA, Burgues O, Ribelles N, Rodriguez-Lescure A, Guerrero A, Ruiz-Borrego M, Munarriz B, LĂłpez JA, Adamo B, Cheang MC, Li Y, Hu Z, Gulley ML, Vidal MJ, Pitcher BN, Liu MC, Citron ML, Ellis MJ, Mardis E, Vickery T, Hudis CA, Winer EP, Carey LA, Caballero R, Carrasco E, MartĂn M, Perou CM, Alba E. Predicting response and survival in chemotherapy-treated triple-negative breast cancer. British Journal Of Cancer 2014, 111: 1532-1541. PMID: 25101563, PMCID: PMC4200088, DOI: 10.1038/bjc.2014.444.Peer-Reviewed Original ResearchConceptsTriple-negative breast cancerChemotherapy responseClinical trialsProliferation signatureBreast cancerMultivariable logistic regression modelFuture clinical trialsBasal-like diseaseBasal-like subtypeIntrinsic molecular subtypesClinical pathological dataLogistic regression modelsBLBC subtypeIntrinsic subtypesSignificant interaction testMolecular subtypesCox modelIndependent cohortTNBC heterogeneityClinical implicationsSignificant associationBLBCChemotherapyPhenotypic subtypesLow expression