Featured Publications
Biocompatibility of platinum-based bulk metallic glass in orthopedic applications
Loye AM, Kwon HK, Dellal D, Ojeda R, Lee S, Davis R, Nagle N, Doukas PG, Schroers J, Lee FY, Kyriakides TR. Biocompatibility of platinum-based bulk metallic glass in orthopedic applications. Biomedical Materials 2021, 16: 045018. PMID: 33873168, DOI: 10.1088/1748-605x/abf981.Peer-Reviewed Original ResearchConceptsBulk metallic glassPt-BMGPlatinum-based bulk metallic glassMetallic glassesConventional metallic implantsCorrosion resistanceHigh strengthMechanical testingOrthopedic applicationsBone applicationsMetallic implantsMicro-computed tomographyAmorphous metalsTitaniumWearBiocompatibilitySimilar biocompatibilityFurther processingGlassDuctilityNanopatternsNanoscaleApplicationsMesenchymal stem cellsStrength
2016
Tissue engineering advances in spine surgery
Makhni MC, Caldwell JM, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY. Tissue engineering advances in spine surgery. Regenerative Medicine 2016, 11: 211-222. PMID: 26877156, DOI: 10.2217/rme.16.3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomimetic MaterialsBone and BonesBone Morphogenetic ProteinsHumansIntervertebral DiscMesenchymal Stem CellsSpineTissue EngineeringTissue ScaffoldsConceptsTissue-engineered bone graftsBiomimetic 3D scaffoldsTissue-engineered constructsBone graftTissue engineering advancesDonor site painNanoscale technologiesSite painEngineering advancesHematoma formationVascular injurySpine surgeryBone graftingBone allograftSurgery applicationsMesenchymal stem cellsTissue graftViable boneIntervertebral disc regeneration strategiesHuman tissue graftsGraftGold standardOsteoinductive capabilityDisease transmissionOwn disadvantages
2015
Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential
Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell JM, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere JP, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell 2015, 160: 269-284. PMID: 25594183, PMCID: PMC4436082, DOI: 10.1016/j.cell.2014.11.042.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone and BonesCartilageIntercellular Signaling Peptides and ProteinsIntestine, SmallMesenchymal Stem CellsMiceMice, Inbred C57BLConceptsBone morphogenetic proteinStem cellsMarrow stromal cellsMesenchymal stem cellsGremlin-1Skeletal stem cellsTissue stem cellsFate-mapping experimentsStromal cellsMorphogenetic proteinsPostnatal skeletonBone developmentCell of originMesenchymal sheathCellsAdipocytesOsteoblastsExpressionBone marrowChondrocytesProteinBone remodelingPerisinusoidal spaceRemodelingFracture repair
2013
Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study
Amorosa L, Lee C, Aydemir, Nizami S, Hsu A, Patel N, Gardner T, Navalgund A, Kim DG, Park S, Mao J, Lee F. Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study. International Journal Of Nanomedicine 2013, Volume 8: 1637-1643. PMID: 23637532, PMCID: PMC3639117, DOI: 10.2147/ijn.s42855.Peer-Reviewed Original ResearchConceptsAddition of hMSCsPolymer-based scaffoldsLoad-bearing characteristicsPhysiologic cyclic loadingPhase angleCritical-sized segmental defectsScaffold alone groupViscous stiffnessCyclic loadingMechanical propertiesFemoral defect modelSized segmental defectsRat femoral defect modelHuman mesenchymal stem cellsMechanical simulationsScaffold groupDifferent biomechanical characteristicsEnhanced bone formationHigh phase anglesDefect modelBiomechanical characteristicsExperimental studyHost boneStiffnessDefect repair
2012
Efficient differentiation of human iPSC‐derived mesenchymal stem cells to chondroprogenitor cells
Guzzo RM, Gibson J, Xu R, Lee FY, Drissi H. Efficient differentiation of human iPSC‐derived mesenchymal stem cells to chondroprogenitor cells. Journal Of Cellular Biochemistry 2012, 114: 480-490. PMID: 22961870, DOI: 10.1002/jcb.24388.Peer-Reviewed Original Research