2001
A HERV-K provirus in chimpanzees, bonobos and gorillas, but not humans
Barbulescu M, Turner G, Su M, Kim R, Jensen-Seaman M, Deinard A, Kidd K, Lenz J. A HERV-K provirus in chimpanzees, bonobos and gorillas, but not humans. Current Biology 2001, 11: 779-783. PMID: 11378389, DOI: 10.1016/s0960-9822(01)00227-5.Peer-Reviewed Original ResearchConceptsTransposable genetic elementsDNA sequencing studiesHERV-K provirusesUnique insertion sitesAfrican great apesChimpanzee genomeEvolutionary separationPhylogenetic relationshipsOrthologous positionsCommon ancestorHuman genomeModern speciesPreintegration siteGenetic elementsSequencing studiesGenomeEndogenous retrovirusesHuman evolutionGreat apesLineagesGorillasSpeciesHERVInsertion siteChimpanzeesRace, Genes and Human Origins: How Genetically Diverse Are We?
Kidd K. Race, Genes and Human Origins: How Genetically Diverse Are We? 2001, 11-24. DOI: 10.1007/978-1-4615-1591-3_2.Peer-Reviewed Original Research
1999
Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans
Barbulescu M, Turner G, Seaman M, Deinard A, Kidd K, Lenz J. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Current Biology 1999, 9: 861-s1. PMID: 10469592, DOI: 10.1016/s0960-9822(99)80390-x.Peer-Reviewed Original ResearchConceptsOpen reading frameFull-length open reading frameHuman genome todayReading frameFull length HERVGenome todayGenomes of humansCis-acting sequencesHERV-K provirusesViral open reading framesGorilla genomeHuman genomePrimate evolutionMouse mammary tumor virusComplete sequencingHost genomePreintegration siteHuman endogenous retrovirus KGenomeHERV-K proteinsEndogenous retrovirusesMammary tumor virusTumor virusProvirusMultiple proviruses
1996
Chromosomal localization of long trinucleotide repeats in the human genome by fluorescence in situ hybridization
Haaf T, Sirugo G, Kidd K, Ward D. Chromosomal localization of long trinucleotide repeats in the human genome by fluorescence in situ hybridization. Nature Genetics 1996, 12: 183-185. PMID: 8563757, DOI: 10.1038/ng0296-183.Peer-Reviewed Original ResearchConceptsLong trinucleotide repeatsChromosomal localizationTrinucleotide repeatsHuman genomeNormal human genomeSitu hybridizationDifferent genetic diseasesUnstable trinucleotide repeatsChromosomal distributionTrinucleotide microsatellitesLarge repeatsAGG repeatsCCG repeatsRepeatsGenetic diseasesRepeat lociLarge CTG expansionsGenomeCTG expansionHybridizationPathological significanceMyotonic dystrophyMicrosatellitesLocalizationLoci
1990
Mapping the Human Genome: Current Status
Stephens J, Cavanaugh M, Gradie M, Mador M, Kidd K. Mapping the Human Genome: Current Status. Science 1990, 250: 237-244. PMID: 2218527, DOI: 10.1126/science.2218527.Peer-Reviewed Original Research
1989
One Form of Bipolar Affective Disorder is Mapped to Chromosome 11
Kidd K, Egeland J, Gerhard D, Pauls D, Sussex J, Allen C, Hostetter A, Kidd J, Pakstis A, Housman D. One Form of Bipolar Affective Disorder is Mapped to Chromosome 11. 1989, 184-187. DOI: 10.1007/978-1-4612-3524-8_41.Peer-Reviewed Original ResearchComplex human disordersGenetic linkageGenetic markersHuman disordersComplex traitsRestriction fragment length polymorphismHuman genomeFragment length polymorphismMajor locusChromosome 11Length polymorphismBipolar affective disorderGenomeLociTraitsDNAMarkersLinkageGeneticistsPolymorphismLarge numberDiscoveryFirst stepThe mapping of the locus for multiple endocrine neoplasia type 2A by linkage with chromosome 10 markers.
Simpson N, Kidd K. The mapping of the locus for multiple endocrine neoplasia type 2A by linkage with chromosome 10 markers. Hormone And Metabolic Research. Supplement Series 1989, 21: 5-9. PMID: 2572529.Peer-Reviewed Original ResearchConceptsDisease locusInterstitial retinol-binding proteinChromosome 10 markersTest of linkageChromosome 10Disease genesDeletion siteChromosome 20Additional family dataBinding proteinLociGenesExclusion of linkageSitu hybridizationD10S5Ultimate identificationRetinol-binding proteinType 2AMultiple endocrine neoplasia type 2AGenomeMarkersFamily dataLinkageProteinHybridization
1986
Linkage Analysis in a Family with Dominantly Inherited Torsion Dystonia: Exclusion of the Pro-Opiomelanocortin and Glutamic Acid Decarboxylase Genes and Other Chromosomal Regions Using DNA Polymorphisms
Breakefield X, Bressman S, Kramer P, Ozelius L, Moskowitz C, Tanzi R, Brin M, Hobbs W, Kaufman D, Tobin A, Kidd K, Fahn S, Gusella J. Linkage Analysis in a Family with Dominantly Inherited Torsion Dystonia: Exclusion of the Pro-Opiomelanocortin and Glutamic Acid Decarboxylase Genes and Other Chromosomal Regions Using DNA Polymorphisms. Journal Of Neurogenetics 1986, 3: 159-175. PMID: 3016220, DOI: 10.3109/01677068609106846.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedChildChild, PreschoolChromosome DeletionChromosome MappingCloning, MolecularDNADNA Restriction EnzymesDystonia Musculorum DeformansFemaleGenesGenes, DominantGenetic LinkageGlutamate DecarboxylaseHumansLymphocytesMaleMiddle AgedPedigreePolymorphism, GeneticPro-OpiomelanocortinConceptsLinkage analysisGlutamic acid decarboxylase geneRestriction fragment length polymorphismDecarboxylase geneDNA sequencesMode of inheritanceChromosomal regionsDNA polymorphismsFragment length polymorphismDefective geneLod score methodGenesDNA probesLength polymorphismLymphoblast linesInheritanceDisease statesAutosomal dominant modeGene penetranceSequenceFamilyPolymorphismGenomeAcid decarboxylaseRequisite assumptions