2020
HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020, 216: 717-734. PMID: 32883702, PMCID: PMC7648574, DOI: 10.1534/genetics.120.303629.Peer-Reviewed Original ResearchConceptsGermline ring canalsRing canalsActin cytoskeletonF-actinDrosophila melanogaster oogenesisSomatic follicle cellsCombination of CRISPRF-actin accumulationF-actin recruitmentFilamentous actin cytoskeletonFemale germlineActin structuresFruit flyHigh fecundityFollicle cellsCytoskeletonGermlineOverexpressionAccumulationDrosophilaOogenesisMutagenesisCRISPRFilaminGenes
2018
Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion
Hudson AM, Mannix KM, Gerdes JA, Kottemann MC, Cooley L. Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion. Development 2018, 146: dev169219. PMID: 30559276, PMCID: PMC6340150, DOI: 10.1242/dev.169219.Peer-Reviewed Original ResearchConceptsTandem affinity purificationUbiquitin ligase complexCullin-3 functionShort sequence motifsSpecialized cytoskeletal structuresUbiquitin-proteasome systemF-actin cytoskeletonSpecialized actinLigase complexActin cytoskeletonRing canalsSequence motifsGenetic evidenceCytoskeletal structuresAffinity purificationCytoskeletonSubstrate degradationBiochemical evidenceUnusual mechanismKelchCRL3CullinMass spectrometryOogenesisMutagenesis
2014
Methods for studying oogenesis
Hudson AM, Cooley L. Methods for studying oogenesis. Methods 2014, 68: 207-217. PMID: 24440745, PMCID: PMC4048766, DOI: 10.1016/j.ymeth.2014.01.005.Peer-Reviewed Original ResearchConceptsGAL4/UAS systemStem cell maintenanceDevelopmental cell biologyCell cycle controlClonal screensDrosophila oogenesisCell polarityWhole-mount tissuesCytoskeletal regulationEgg chambersTransgenic linesCell maintenanceIntercellular transportSomatic cellsTrap linesGamete developmentCell biologyUAS systemExcellent systemCycle controlGene expressionIntercellular communicationCell deathOogenesisCell migration
2013
Bridging the divide
McLean PF, Cooley L. Bridging the divide. Fly 2013, 8: 13-18. PMID: 24406334, PMCID: PMC3974888, DOI: 10.4161/fly.27016.Peer-Reviewed Original ResearchConceptsRing canalsMitotic clonesSomatic tissuesDrosophila somatic tissuesFollicle cellsProtein of interestNon-recombined cellsDirect cytoplasmic connectionsDrosophila oogenesisImaginal discsGenetic toolsIntercellular exchangeProtein movementCleavage furrowCytoplasmic connectionsProteinClonesCellsMosaic cellsClonal dataOogenesisGFPTissue
2011
Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Developmental Biology 2011, 355: 250-262. PMID: 21570389, PMCID: PMC3118931, DOI: 10.1016/j.ydbio.2011.04.022.Peer-Reviewed Original ResearchConceptsEgg chambersNutrient stressIntercellular transportMT reorganizationNutrient availabilityNurse cellsPutative RNA binding proteinMT-dependent mannerRNA binding proteinYpsilon SchachtelDrosophila oogenesisProcessing bodiesProtein localizationEarly oogenesisNutrient deprivationMicrotubule organizationMetabolic checkpointCytoplasmic componentsAnimal oocytesStress responseYolk uptakeBinding proteinPrevitellogenic stageOogenesisIndependent mechanisms
2007
Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis
Lee S, Cooley L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. Journal Of Cell Biology 2007, 176: 941-952. PMID: 17389229, PMCID: PMC2064080, DOI: 10.1083/jcb.200701048.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCaenorhabditis elegansCell DifferentiationConserved SequenceCytoplasmic StreamingDrosophila melanogasterDrosophila ProteinsEndoplasmic ReticulumExocytosisGolgi ApparatusMembrane ProteinsMicroscopy, Electron, TransmissionMolecular Sequence DataOocytesOogenesisProtein TransportSequence Homology, Amino AcidSequence Homology, Nucleic AcidTransport VesiclesZebrafishConceptsVesicular trafficMembrane trafficEndoplasmic reticulumER reorganizationER membrane proteinsDrosophila melanogaster oocytesDrosophila oogenesisMembrane proteinsOocyte endoplasmic reticulumLateral membranesER clusteringReticulumImportant mechanismVitellogenesisOocytesOogenesisEndocytosisReorganizationProteinMembraneCellsThe Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis
Petrella LN, Smith-Leiker T, Cooley L. The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis. Development 2007, 134: 703-712. PMID: 17215303, DOI: 10.1242/dev.02766.Peer-Reviewed Original ResearchConceptsDrosophila oogenesisRing canalsFemale sterile mutantPost-mitotic cellsDrosophila adducinSpecialized organellesEarly oogenesisLate oogenesisHT proteinsFusomeMitotic proliferationHT genesMitotic cellsOogenesisGerm cellsNormal developmentCell proliferationProteinPolyproteinCellsEssential componentProliferationMutantsAdducinOrganelles
2006
Illuminating the role of caspases during Drosophila oogenesis
Mazzalupo S, Cooley L. Illuminating the role of caspases during Drosophila oogenesis. Cell Death & Differentiation 2006, 13: 1950-1959. PMID: 16528381, DOI: 10.1038/sj.cdd.4401892.Peer-Reviewed Original ResearchConceptsNurse cell deathCaspase activityCell deathNurse cellsFluorescent proteinApoptosis protein 1Caspase inhibitor p35Caspase cleavage siteStarvation-induced deathRole of caspasesStarvation-induced apoptosisCyan fluorescent proteinYellow fluorescent proteinDrosophila inhibitorGermline developmentDrosophila oogenesisNormal oogenesisPoor environmental conditionsOogenesisCleavage siteProtein 1Environmental conditionsCaspasesProteinOocytes
2002
UNDERSTANDING THE FUNCTION OF ACTIN-BINDING PROTEINS THROUGH GENETIC ANALYSIS OF DROSOPHILA OOGENESIS
Hudson AM, Cooley L. UNDERSTANDING THE FUNCTION OF ACTIN-BINDING PROTEINS THROUGH GENETIC ANALYSIS OF DROSOPHILA OOGENESIS. Annual Review Of Genetics 2002, 36: 455-488. PMID: 12429700, DOI: 10.1146/annurev.genet.36.052802.114101.Peer-Reviewed Original ResearchConceptsActin-binding proteinsActin cytoskeletonGenetic analysisNew actin-binding proteinCell biological approachesGenetic model systemActin binding proteinsRecent genetic analysesDrosophila ovaryDrosophila oogenesisGenetic screenBiological approachesGenetic resultsProteinCytoskeletonOogenesisModel systemUltrastructural characteristicsActinScreenUnderstandingOvariesMutations in the midway Gene Disrupt a Drosophila Acyl Coenzyme A: Diacylglycerol Acyltransferase
Buszczak M, Lu X, Segraves WA, Chang TY, Cooley L. Mutations in the midway Gene Disrupt a Drosophila Acyl Coenzyme A: Diacylglycerol Acyltransferase. Genetics 2002, 160: 1511-1518. PMID: 11973306, PMCID: PMC1462074, DOI: 10.1093/genetics/160.4.1511.Peer-Reviewed Original ResearchConceptsEgg chambersDiacylglycerol acyltransferaseNurse cellsAcyl coenzyme AMutant egg chambersNurse cell deathCell deathInsect cells resultsEgg chamber developmentCoenzyme AGermline apoptosisDrosophila oogenesisCytoplasm transportDGAT activityCells resultsChamber developmentNeutral lipidsGenesLipid metabolismDiacylglycerolApoptosisAcyltransferaseDrosophilaCellsOogenesis
2000
Eggs to die for: cell death during Drosophila oogenesis
Buszczak M, Cooley L. Eggs to die for: cell death during Drosophila oogenesis. Cell Death & Differentiation 2000, 7: 1071-1074. PMID: 11139280, DOI: 10.1038/sj.cdd.4400755.Peer-Reviewed Original ResearchConceptsGermline apoptosisCell deathDrosophila oogenesisFemale-sterile mutationsSterile mutationsFemale germlineC. elegansGermline cellsGenetic controlDefective cellsEssential nutrientsOogenesisSurviving oocytesApoptosisMorphological changesEggsDrosophilaElegansCellsLater stagesGermlineSpeciesProteinVital roleMutations
1998
Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency
Foley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998, 125: 1075-1082. PMID: 9463354, DOI: 10.1242/dev.125.6.1075.Peer-Reviewed Original ResearchConceptsEgg chambersNurse cellsDNA fragmentationDrosophila nurse cellsMutant egg chambersDrosophila egg chamberOvarian expression patternsDrosophila apoptosisGermline clonesHead involutionCytoplasm transportPositive regulatorRegulatory genesStage 13Cytoplasm transferApoptotic vesiclesCytoplasmic factorsNegative regulatorExpression patternsWild typeGenesFragmented DNAOogenesisApoptosisStage 12
1997
Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer
Robinson D, Cooley L. Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer. Journal Of Cell Biology 1997, 138: 799-810. PMID: 9265647, PMCID: PMC2138045, DOI: 10.1083/jcb.138.4.799.Peer-Reviewed Original ResearchConceptsDrosophila KelchRing canalsAmino halfKelch repeat domainStructure-function analysisAmino-terminal regionGerm cell membranesKelch family proteinDominant sterilityBTB domainProtein domainsRepeat domainKelchActin filamentsCell membraneProteinCanal localizationAdditional interactionsDrosophilaDomainCytoskeletonOogenesisLocalizationSterilityActinFormation of the Drosophila Ovarian Ring Canal Inner Rim Depends on cheerio
Robinson D, Smith-Leiker T, Sokol N, Hudson A, Cooley L. Formation of the Drosophila Ovarian Ring Canal Inner Rim Depends on cheerio. Genetics 1997, 145: 1063-1072. PMID: 9093858, PMCID: PMC1207876, DOI: 10.1093/genetics/145.4.1063.Peer-Reviewed Original ResearchMeSH KeywordsActinsAllelesAnimalsCalmodulin-Binding ProteinsCarrier ProteinsCell CommunicationCell MembraneChromosome MappingCytoskeletonDrosophila melanogasterDrosophila ProteinsFemaleGene Expression Regulation, DevelopmentalGenes, InsectInfertility, FemaleInsect ProteinsIntercellular JunctionsMicrofilament ProteinsOocytesOvaryConceptsStable intercellular bridgesExamination of mutantsDrosophila oogenesisPlasma membrane stabilizationRing canalsCytoplasm transportMutant cellsFilamentous actinCleavage furrowRIM proteinsNurse cellsActin filamentsIntercellular bridgesMutantsCritical functionsKelchCheeriosProteinStep-wise processAssemblyMembrane stabilizationCellsCytoskeletonOogenesisGenes
1994
Cytoskeletal Functions During Drosophila Oogenesis
Cooley L, Theurkauf W. Cytoskeletal Functions During Drosophila Oogenesis. Science 1994, 266: 590-596. PMID: 7939713, DOI: 10.1126/science.7939713.Peer-Reviewed Original ResearchConceptsDrosophila oogenesisCytoskeletal functionMature Drosophila oocytesOrganismal morphogenesisDrosophila oocytesCytoskeletal organizationCytoskeletal transformationCell shapeCytoskeletal elementsOogenesisCytological studiesSpecific functionsCell morphologyComplex seriesMechanistic implicationsMechanisms of developmentExperimental approachBasic cytoarchitectureCytoskeletonVersatile systemMorphogenesisCytoplasmOocytesFunctionCellsThe villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis
Mahajan-Miklos S, Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 1994, 78: 291-301. PMID: 8044841, DOI: 10.1016/0092-8674(94)90298-4.Peer-Reviewed Original ResearchConceptsVillin-like proteinNurse cellsActin filament bundlesQuail geneMutant egg chambersActin bundle assemblyFilament bundlesEgg chambersFemale sterilityAdult fliesCytoplasmic transportFilamentous actinGene resultsBundle assemblyActin filamentsQuail proteinProtein villinAbsorptive epithelial cellsStriking colocalizationProteinOogenesisVillinEpithelial cellsGenesCellsProfilin mutations disrupt multiple actin-dependent processes during Drosophila development
Verheyen E, Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 1994, 120: 717-728. PMID: 7600952, DOI: 10.1242/dev.120.4.717.Peer-Reviewed Original ResearchConceptsSmall actin binding proteinsEmbryonic lethal phenotypeActin-dependent processesActin binding proteinsActin filament bundlesDrosophila profilinProfilin mutationDrosophila developmentMulticellular organismsViable allelesBristle formationLethal phenotypeActin assemblyProfilin functionSubcellular localizationGenomic deletionsBinding proteinCell migrationCell typesProfilinFilament bundlesOogenesisAbnormal regulationBinucleate cellsDeletionChapter 28 Looking at Oogenesis
Verheyen E, Cooley L. Chapter 28 Looking at Oogenesis. Methods In Cell Biology 1994, 44: 545-561. PMID: 7707970, DOI: 10.1016/s0091-679x(08)60931-0.Peer-Reviewed Original ResearchConceptsNurse cellsDiverse cell biological processesSomatic follicle cellsPhenotypes of mutationsCell biological processesEgg chambersMutant linesCellular rearrangementsDynamic cytoskeletonAdult fliesSecretory epithelial cellsCell biologyBiological processesOogenesisFollicle cellsYeast feedingCell typesYeast pastePhenotype descriptionsCell populationsEpithelial cellsEgg productionCellsDrosophilaOvaries
1992
chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis
Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992, 69: 173-184. PMID: 1339308, DOI: 10.1016/0092-8674(92)90128-y.Peer-Reviewed Original ResearchConceptsCytoplasmic actin networksNurse cellsDrosophila oogenesisEgg chambersCytoplasm transportActin networkPolyploid nurse cellsNurse cell nucleiFlow of cytoplasmMutant phenotypeCDNA clonesProtein 40Cytoplasmic contentsAcanthamoeba profilinCell nucleiProfilinNuclear positionOogenesisGenesChickadeesOocytesCellsYeastCytoplasmClones