Featured Publications
Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients
Qu R, Gupta K, Dong D, Jiang Y, Landa B, Saez C, Strickland G, Levinsohn J, Weng PL, Taketo MM, Kluger Y, Myung P. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell 2022, 57: 1053-1067.e5. PMID: 35421372, PMCID: PMC9050909, DOI: 10.1016/j.devcel.2022.03.011.Peer-Reviewed Original ResearchConceptsMorphogen gradientsCell fate specificationWnt/β-cateninFate specificationShape tissuesOrgan formationCell fateDermal condensatesGenetic perturbationsNiche formationDifferentiation processSpatiotemporal patterningCell behaviorΒ-cateninMore intermediatesComputational approachProliferationMorphogenesisScRNAOrganogenesisShhKey componentProgenitorsCritical transitionDKK1Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P. Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Developmental Cell 2018, 48: 17-31.e6. PMID: 30595533, PMCID: PMC6361530, DOI: 10.1016/j.devcel.2018.11.032.Peer-Reviewed Original ResearchConceptsDermal condensatesSingle-cell RNA sequencingUnbiased single-cell RNA sequencingWnt/β-catenin signalingΒ-catenin signalingTranscriptional statesDifferentiation trajectoriesAppendage morphogenesisRNA sequencingHF morphogenesisCellular eventsRecent progenyCell differentiationMorphogenesisClusters of cellsMolecular differencesDistinctive populationCell analysisCellsDifferentiationHF developmentProgenySignalingDC cellsSequencing
2018
Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing
Sun Q, Rabbani P, Takeo M, Lee SH, Lim CH, Noel ES, Taketo MM, Myung P, Millar S, Ito M. Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. Journal Of Investigative Dermatology 2018, 138: 1591-1600. PMID: 29428355, PMCID: PMC6019608, DOI: 10.1016/j.jid.2018.01.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCicatrixDisease Models, AnimalFemaleHumansIntercellular Signaling Peptides and ProteinsIntracellular Signaling Peptides and ProteinsKeratinocytesMaleMelanocytesMiceMice, TransgenicReceptors, G-Protein-CoupledRegenerationSkinSkin PigmentationStem CellsWnt ProteinsWnt Signaling PathwayWound HealingConceptsMelanocyte stem cellsMelanocyte regenerationEpidermal melanocytesStem cellsWnt ligand secretionActivation of WntWound healingSignal regulationEssential functionsWnt inhibitor Dkk1Wnt ligandsLigand secretionVital regulatorWnt pathwayTransgenic expressionWntMolecular windowΒ-cateninMelanocyte regulationInhibitor DKK1Epithelial cellsMelanocytesWound scarsRegulationAbnormal pigmentation
2014
β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche
Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V. β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche. Science 2014, 343: 1353-1356. PMID: 24653033, PMCID: PMC4096864, DOI: 10.1126/science.1248373.Peer-Reviewed Original ResearchConceptsWild-type cellsWnt/β-catenin signalingΒ-catenin signalingΒ-catenin activationMouse hair follicle stem cellsΒ-cateninStem cell nicheHair follicle stem cellsFollicle stem cellsNiche signalsMutant cellsCell divisionCell nicheCoordinated regenerationHair growthWnt ligandsCellular displacementCell behaviorStem cellsHair regenerationTissue growthSignalingCellsTissue regenerationActivation
2011
Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration
Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M. Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell 2011, 145: 941-955. PMID: 21663796, PMCID: PMC3962257, DOI: 10.1016/j.cell.2011.05.004.Peer-Reviewed Original ResearchConceptsSecondary hair germMelanocyte stem cellsStem cellsStem cell behaviorStem cell populationHair regenerationHair follicle formationPigment-producing melanocytesHair follicle regenerationHair follicle bulgeEpithelial stem cellsGenetic mouse modelsCoordinated activationWntKey pathwaysCell behaviorWnt activationFollicle bulgeFollicle regenerationComplex organHair germFollicle formationCell populationsMcSCsCells
2009
Defining the hair follicle stem cell (Part I)
Myung P, Andl T, Ito M. Defining the hair follicle stem cell (Part I). Journal Of Cutaneous Pathology 2009, 36: 1031-1034. PMID: 19674210, DOI: 10.1111/j.1600-0560.2009.01396.x.Peer-Reviewed Original Research
2001
Differential Requirement for SLP-76 Domains in T Cell Development and Function
Myung P, Derimanov G, Jordan M, Punt J, Liu Q, Judd B, Meyers E, Sigmund C, Freedman B, Koretzky G. Differential Requirement for SLP-76 Domains in T Cell Development and Function. Immunity 2001, 15: 1011-1026. PMID: 11754821, DOI: 10.1016/s1074-7613(01)00253-9.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SubstitutionAnimalsBinding SitesCalcium SignalingCarrier ProteinsCD3 ComplexCell DifferentiationClonal DeletionImmunophenotypingMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMutation, MissensePhosphoproteinsProtein Structure, TertiaryReceptors, Antigen, T-CellRecombinant Fusion ProteinsSequence DeletionSignal TransductionSpleenSrc Homology DomainsStructure-Activity RelationshipThymus GlandT-LymphocytesConceptsSLP-76T cell developmentCell developmentDifferential requirementSLP-76 functionT cell receptor signalingCell receptor signalingAdaptor proteinMolecular mechanismsNull backgroundExamination of miceReceptor signalingCell functionPeripheral T cellsNew insightsTransgenic miceStructural requirementsSpecific domainsT cell functionT cellsCellsDomainMutantsThymocytesSignalingNotch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength
Izon D, Punt J, Xu L, Karnell F, Allman D, Myung P, Boerth N, Pui J, Koretzky G, Pear W. Notch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength. Immunity 2001, 14: 253-264. PMID: 11290335, DOI: 10.1016/s1074-7613(01)00107-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCD4-Positive T-LymphocytesCD5 AntigensCD8-Positive T-LymphocytesCell DifferentiationDNA-Binding ProteinsFlow CytometryGene Expression RegulationHistocompatibility Antigens Class IHistocompatibility Antigens Class IIHumansJurkat CellsLectins, C-TypeLiverMembrane ProteinsMiceMice, TransgenicNFATC Transcription FactorsNuclear ProteinsPromoter Regions, GeneticReceptor, Notch1Receptors, Antigen, T-CellReceptors, Cell SurfaceResponse ElementsSignal TransductionThymus GlandTranscription Factor AP-1Transcription FactorsConceptsTCR signal strengthCell fate decisionsJurkat T cellsTCR-mediated signalingT cell developmentFate decisionsMultiple lineagesNotch signalingDevelopmental arrestCell developmentNotch expressionThymocyte developmentTCR stimulationRetroviral expressionT cellsPhysiological regulationSingle-positive T cellsTCR transgenic thymocytesDifferentiation of immatureTransgenic thymocytesNotch1Maturation of CD4SignalingMouse thymocytesThymocytes