2023
Explainable AI for Prostate MRI: Don't Trust, Verify.
Chapiro J. Explainable AI for Prostate MRI: Don't Trust, Verify. Radiology 2023, 307: e230574. PMID: 37039689, PMCID: PMC10323286, DOI: 10.1148/radiol.230574.Peer-Reviewed Original Research
2021
Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach
Malpani R, Petty CW, Yang J, Bhatt N, Zeevi T, Chockalingam V, Raju R, Petukhova-Greenstein A, Santana JG, Schlachter TR, Madoff DC, Chapiro J, Duncan J, Lin M. Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach. Journal Of Vascular And Interventional Radiology 2021, 33: 324-332.e2. PMID: 34923098, PMCID: PMC8972393, DOI: 10.1016/j.jvir.2021.12.017.Peer-Reviewed Original ResearchImproved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging
Gross M, Spektor M, Jaffe A, Kucukkaya AS, Iseke S, Haider SP, Strazzabosco M, Chapiro J, Onofrey JA. Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging. PLOS ONE 2021, 16: e0260630. PMID: 34852007, PMCID: PMC8635384, DOI: 10.1371/journal.pone.0260630.Peer-Reviewed Original ResearchDeep learningâassisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver
Oestmann PM, Wang CJ, Savic LJ, Hamm CA, Stark S, Schobert I, Gebauer B, Schlachter T, Lin M, Weinreb JC, Batra R, Mulligan D, Zhang X, Duncan JS, Chapiro J. Deep learningâassisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. European Radiology 2021, 31: 4981-4990. PMID: 33409782, PMCID: PMC8222094, DOI: 10.1007/s00330-020-07559-1.Peer-Reviewed Original ResearchConceptsNon-HCC lesionsHepatocellular carcinomaHCC lesionsAtypical imagingGrading systemLI-RADS criteriaAtypical imaging featuresPrimary liver cancerTypical hepatocellular carcinomaAtypical hepatocellular carcinomaContrast-enhanced MRISensitivity/specificityLiver transplantMethodsThis IRBRetrospective studyLiver malignanciesImaging featuresLiver cancerAtypical featuresConclusionThis studyLesionsMRIClinical applicationCarcinomaImage-based diagnosis
2020
Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning
Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro J, Lin M. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdominal Radiology 2020, 46: 216-225. PMID: 32500237, PMCID: PMC7714704, DOI: 10.1007/s00261-020-02604-5.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, HepatocellularDeep LearningHumansLiver NeoplasmsMagnetic Resonance ImagingRetrospective StudiesConceptsDeep convolutional neural networkAverage false positive rateDice similarity coefficientU-NetDeep learning algorithmsConvolutional neural networkTest setMean Dice similarity coefficientRandom forest classifierDCNN methodDCNN approachDeep learningNet architectureLearning algorithmNeural networkLiver segmentationManual 3D segmentationForest classifierGround truthManual segmentationFalse positive rateCorresponding segmentationSegmentationMultiphasic contrast-enhanced MRIThresholding
2019
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features
Wang CJ, Hamm CA, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Weinreb JC, Duncan JS, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. European Radiology 2019, 29: 3348-3357. PMID: 31093705, PMCID: PMC7243989, DOI: 10.1007/s00330-019-06214-8.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAlgorithmsBile Duct NeoplasmsBile Ducts, IntrahepaticCarcinoma, HepatocellularCholangiocarcinomaDeep LearningFemaleHumansImage Interpretation, Computer-AssistedLiver NeoplasmsMachine LearningMagnetic Resonance ImagingMaleMiddle AgedNeural Networks, ComputerPredictive Value of TestsProof of Concept StudyRetrospective StudiesConceptsDeep learning systemConvolutional neural networkLearning systemRelevance scoresFeature mapsPre-trained CNN modelsFeature relevance scoresMulti-phasic MRINeural network interpretationEvidence-based decision supportDeep NeuralDeep learningCNN modelLesion classifierLearning prototypeNeural networkOriginal imageSystem prototypeDecision supportLesion classificationNetwork interpretationImage voxelsIncorrect featuresLesion classesTest setDeep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI
Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb JC, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. European Radiology 2019, 29: 3338-3347. PMID: 31016442, PMCID: PMC7251621, DOI: 10.1007/s00330-019-06205-9.Peer-Reviewed Original ResearchAdultAgedBile Duct NeoplasmsBile Ducts, IntrahepaticCarcinoma, HepatocellularCholangiocarcinomaDeep LearningFemaleHumansImage Interpretation, Computer-AssistedLiver NeoplasmsMagnetic Resonance ImagingMaleMiddle AgedNeural Networks, ComputerReproducibility of ResultsROC CurveSensitivity and SpecificityUnited States