2000
Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne
Petrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne. Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.Peer-Reviewed Original ResearchMeSH Keywords1,2-DipalmitoylphosphatidylcholineAlgorithmsAmino Acid MotifsAmino Acid SequenceBinding SitesComputer SimulationDimerizationDimyristoylphosphatidylcholineGlycophorinsLipid BilayersModels, MolecularMolecular Sequence DataNuclear Magnetic Resonance, BiomolecularPeptide FragmentsPhosphatidylcholinesProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsConceptsMonomer formLipid bilayersLipid chain lengthUnfavorable electrostatic repulsionLipid typeMolecular dynamics simulationsExplicit lipid bilayerElectrostatic repulsionMonomeric helicesLipid-lipid interactionsInteraction enthalpiesChain lengthDimer structureEnergetic propertiesCHARMM potentialInteraction energyAccessible volumeDynamics simulationsLipid propertiesUnsaturated lipidsEnthalpy calculationsLipid environmentBilayer thicknessAcyl chainsThermodynamic treatmentHELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original Research
1997
Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †
Hunt J, Rath P, Rothschild K, Engelman D. Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †. Biochemistry 1997, 36: 15177-15192. PMID: 9398245, DOI: 10.1021/bi970147b.Peer-Reviewed Original ResearchConceptsLipid bilayersIntegral membrane protein bacteriorhodopsinMembrane-spanning regionIntegral membrane proteinsPH-dependent membrane insertionAspartic acid residuesMembrane protein bacteriorhodopsinInsertion reactionMembrane insertionMembrane proteinsAqueous solutionHydrophobic sequenceAqueous bufferPoor solubilityAlpha-helixAcid residuesSignificant solubilityC-helixSpectroscopic assaysΑ-helixSecondary structureProtein bacteriorhodopsinNeutral pHPeptide associatesBilayersAssessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody
Hunt J, McCrea P, Zaccaı̈ G, Engelman D. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 273: 1004-1019. PMID: 9367787, DOI: 10.1006/jmbi.1997.1330.Peer-Reviewed Original ResearchConceptsMembrane protein complexesIntegral membrane proteinsProtein complexesMembrane proteinsIntegral membrane protein complexPhospholipid vesiclesSmall unilamellar phospholipid vesiclesUnilamellar phospholipid vesiclesMolecular massF. MoodySpatial arrangementNon-ionic detergentIndividual complexesVesiclesModel systemMonomeric bacteriorhodopsinProteinUnknown scopeComplexesAggregation stateRadius of gyrationBacteriorhodopsinDetergentsBilayers
1996
Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins
Engelman D. Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins. Science 1996, 274: 1850-1851. PMID: 8984645, DOI: 10.1126/science.274.5294.1850.Peer-Reviewed Original ResearchMapping the lipid-exposed surfaces of membrane proteins
Arkin I, MacKenzie K, Fisher L, Aimoto S, Engelman D, Smith S. Mapping the lipid-exposed surfaces of membrane proteins. Nature Structural & Molecular Biology 1996, 3: 240-243. PMID: 8605625, DOI: 10.1038/nsb0396-240.Peer-Reviewed Original ResearchConceptsMembrane proteinsLong transmembrane helixLipid-exposed surfaceThree-dimensional foldHigh-resolution structuresRelative rotational orientationTransmembrane helicesTransmembrane segmentsThird cysteineCysteine residuesLipid environmentHelix interfacePentameric complexProteinLipid interfaceStable complexesHelixResiduesUndergoes exchangeSulphydryl groupsPhospholambanComplexesInternal faceCysteineRotational orientation
1995
Small angle x-ray scattering studies of magnetically oriented lipid bilayers
Hare B, Prestegard J, Engelman D. Small angle x-ray scattering studies of magnetically oriented lipid bilayers. Biophysical Journal 1995, 69: 1891-1896. PMID: 8580332, PMCID: PMC1236422, DOI: 10.1016/s0006-3495(95)80059-7.Peer-Reviewed Original ResearchConceptsNuclear magnetic resonanceLipid bilayersMembrane-associated moleculesBilayer thicknessLipid particlesSmall-angle X-rayX-ray scatteringAngle X-rayNMR dataDLPC vesiclesOrientational parametersX-ray solutionMolar ratioPhospholipid moleculesStructural studiesOrientational energyPhospholipid bilayersAnalogue 3MoleculesBilayersInterparticle spacingX-rayMagnetic resonanceParticlesComplexesStructural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes
Arkin I, Rothman M, Ludlam C, Aimoto S, Engelman D, Rothschild K, Smith S. Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes. Journal Of Molecular Biology 1995, 248: 824-834. PMID: 7752243, DOI: 10.1006/jmbi.1995.0263.Peer-Reviewed Original ResearchConceptsSelective ion conductanceTransmembrane domainAmino acid residuesN-terminal 30 amino acid residuesAcid residuesCircular dichroismPentameric protein complexFull-length proteinC-terminal 22 amino acid residuesPhospholipid membranesIon channel complexTransmembrane helicesProtein complexesPhosphorylation sitesMembrane proteinsIon conductanceCarboxy terminusHelix bundleIon poreReticulum membraneInhibitory complexLong helixPentameric complexSecondary structureProtein
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.Peer-Reviewed Original ResearchGlycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study.
Adair B, Engelman D. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 1994, 33: 5539-44. PMID: 8180176, DOI: 10.1021/bi00184a024.Peer-Reviewed Original Research
1992
Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling
Bormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling. Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.Peer-Reviewed Original ResearchConceptsProtein foldingTransmembrane regionReceptor proteinClose contact sitesSignal transductionQuaternary structureReceptor moleculesConformational changesHelical transmembrane regionsAllosteric conformational changeHelix-helix associationConformational change modelTertiary/quaternary structureTransmembrane helicesTransmembrane domainMechanism of insertionCytoplasmic domainTransmembrane signalingContact sitesPrimary structureSecondary structureProteinOligomerizationFoldingProteolytic fragments
1990
Membrane protein folding and oligomerization: the two-stage model.
Popot J, Engelman D. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 1990, 29: 4031-7. PMID: 1694455, DOI: 10.1021/bi00469a001.Peer-Reviewed Original ResearchMeSH KeywordsBacteriorhodopsinsIon ChannelsLipid BilayersMembrane ProteinsModels, ChemicalProtein ConformationSolubilityConceptsMembrane protein foldingIntegral membrane proteinsMembrane proteinsProtein foldingMembrane protein subunitsTransmembrane segmentsTransmembrane structureSequence dataProtein subunitsVariety of functionsAqueous channelsLipid bilayersFoldingProteinSubunitsOligomerizationAssemblyFragmentsBilayersThe "microassembly" of integral membrane proteins: applications & implications.
Popot J, Engelman D, Zaccai G, de Vitry C. The "microassembly" of integral membrane proteins: applications & implications. Progress In Clinical And Biological Research 1990, 343: 237-62. PMID: 2198582.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsMembrane proteinsFunctional integral membrane proteinsMost integral membrane proteinsSingle transmembrane alpha-helixInner membrane complexTransmembrane alpha-helixAutonomous folding domainsInner membraneIntegral subunitThree-dimensional structureTransmembrane regionSequence dataMembrane complexAlpha-helixExtensive rearrangementTertiary structureProteinPolypeptideLipid phasePossible roleOrganellesBiosynthesisSubunitsLocal interactions
1987
Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process
Popot J, Gerchman S, Engelman D. Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process. Journal Of Molecular Biology 1987, 198: 655-676. PMID: 3430624, DOI: 10.1016/0022-2836(87)90208-7.Peer-Reviewed Original ResearchConceptsLipid vesiclesAbsence of retinalAlpha-helical structureStable transmembrane helixPurple membrane latticeTransmembrane helicesSmall lipid vesiclesCircular dichroism spectraMembrane proteinsMixture of monomersFree energy minimumDodecyl sulfate solutionVesicle fusionRenatured moleculesSame absorption spectrumCorrect refoldingMajor rearrangementsStructure of bacteriorhodopsinTertiary structureMembrane latticeAbsorption spectroscopyNeutron crystallographyFolding mechanismPartial dehydration processLipid bilayers
1986
Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins
Engelman D, Steitz T, Goldman A. Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins. Annual Review Of Biophysics 1986, 15: 321-353. PMID: 3521657, DOI: 10.1146/annurev.bb.15.060186.001541.Peer-Reviewed Original Research
1984
Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer
Gogol E, Engelman D. Neutron scattering shows that cytochrome b5 penetrates deeply into the lipid bilayer. Biophysical Journal 1984, 46: 491-495. PMID: 6498267, PMCID: PMC1435021, DOI: 10.1016/s0006-3495(84)84046-1.Peer-Reviewed Original Research
1983
Neutron diffraction analysis of cytochrome b5 reconstituted in deuterated lipid multilayers
Gogol E, Engelman D, Zaccai G. Neutron diffraction analysis of cytochrome b5 reconstituted in deuterated lipid multilayers. Biophysical Journal 1983, 43: 285-292. PMID: 6626669, PMCID: PMC1329297, DOI: 10.1016/s0006-3495(83)84352-5.Peer-Reviewed Original ResearchPair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers
Pearson L, Chan S, Lewis B, Engelman D. Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers. Biophysical Journal 1983, 43: 167-174. PMID: 6616005, PMCID: PMC1329246, DOI: 10.1016/s0006-3495(83)84337-9.Peer-Reviewed Original ResearchBacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses
Lewis B, Engelman D. Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. Journal Of Molecular Biology 1983, 166: 203-210. PMID: 6854643, DOI: 10.1016/s0022-2836(83)80006-0.Peer-Reviewed Original ResearchLipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles
Lewis B, Engelman D. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. Journal Of Molecular Biology 1983, 166: 211-217. PMID: 6854644, DOI: 10.1016/s0022-2836(83)80007-2.Peer-Reviewed Original Research