2024
In vivo neuropil density from anatomical MRI and machine learning
Akif A, Staib L, Herman P, Rothman D, Yu Y, Hyder F. In vivo neuropil density from anatomical MRI and machine learning. Cerebral Cortex 2024, 34: bhae200. PMID: 38771239, PMCID: PMC11107380, DOI: 10.1093/cercor/bhae200.Peer-Reviewed Original ResearchConceptsMagnetic resonance imagingSynaptic densityNeuropil densityCellular densityArtificial neural networkNeural networkPositron emission tomographyAnatomical magnetic resonance imagingHealthy subjectsSynaptic activityMRI scansMachine learning algorithmsBrain's energy budgetEmission tomographyIn vivo MRI scansResonance imagingTissue cellularityLearning algorithmsDiffusion magnetic resonance imagingMachine learningMicroscopic interpretationInterpretation of functional neuroimaging dataIndividual predictionsSubjectsMultimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair M, Constable R, Lake E, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nature Communications 2024, 15: 229. PMID: 38172111, PMCID: PMC10764905, DOI: 10.1038/s41467-023-44363-z.Peer-Reviewed Original Research
2023
Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury
Mihailovic J, Sanganahalli B, Hyder F, Chitturi J, Elkabes S, Heary R, Kannurpatti S. Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury. Neuroscience Letters 2023, 820: 137607. PMID: 38141752, PMCID: PMC10797561, DOI: 10.1016/j.neulet.2023.137607.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCervical CordDiffusion Tensor ImagingMagnetic Resonance ImagingRatsSpinal CordSpinal Cord InjuriesConceptsSpinal cord injuryCervical spinal cord injuryDiffusion tensor imagingCord injurySpinal cordCervical spinal cordState functional connectivitySpinal cord samplesSpinal cord diffusion tensor imagingMagnetic resonance imagingBrain functional MRIInjury epicenterSpinal reorganizationPost-SCINeuroplastic changesCord samplesCortical sensoryRat modelTraumatic injuryMD changeMotor networkNervous systemResonance imagingSingle-subject levelFunctional MRIA consensus protocol for functional connectivity analysis in the rat brain
Grandjean J, Desrosiers-Gregoire G, Anckaerts C, Angeles-Valdez D, Ayad F, Barrière D, Blockx I, Bortel A, Broadwater M, Cardoso B, Célestine M, Chavez-Negrete J, Choi S, Christiaen E, Clavijo P, Colon-Perez L, Cramer S, Daniele T, Dempsey E, Diao Y, Doelemeyer A, Dopfel D, Dvořáková L, Falfán-Melgoza C, Fernandes F, Fowler C, Fuentes-Ibañez A, Garin C, Gelderman E, Golden C, Guo C, Henckens M, Hennessy L, Herman P, Hofwijks N, Horien C, Ionescu T, Jones J, Kaesser J, Kim E, Lambers H, Lazari A, Lee S, Lillywhite A, Liu Y, Liu Y, López -Castro A, López-Gil X, Ma Z, MacNicol E, Madularu D, Mandino F, Marciano S, McAuslan M, McCunn P, McIntosh A, Meng X, Meyer-Baese L, Missault S, Moro F, Naessens D, Nava-Gomez L, Nonaka H, Ortiz J, Paasonen J, Peeters L, Pereira M, Perez P, Pompilus M, Prior M, Rakhmatullin R, Reimann H, Reinwald J, Del Rio R, Rivera-Olvera A, Ruiz-Pérez D, Russo G, Rutten T, Ryoke R, Sack M, Salvan P, Sanganahalli B, Schroeter A, Seewoo B, Selingue E, Seuwen A, Shi B, Sirmpilatze N, Smith J, Smith C, Sobczak F, Stenroos P, Straathof M, Strobelt S, Sumiyoshi A, Takahashi K, Torres-García M, Tudela R, van den Berg M, van der Marel K, van Hout A, Vertullo R, Vidal B, Vrooman R, Wang V, Wank I, Watson D, Yin T, Zhang Y, Zurbruegg S, Achard S, Alcauter S, Auer D, Barbier E, Baudewig J, Beckmann C, Beckmann N, Becq G, Blezer E, Bolbos R, Boretius S, Bouvard S, Budinger E, Buxbaum J, Cash D, Chapman V, Chuang K, Ciobanu L, Coolen B, Dalley J, Dhenain M, Dijkhuizen R, Esteban O, Faber C, Febo M, Feindel K, Forloni G, Fouquet J, Garza-Villarreal E, Gass N, Glennon J, Gozzi A, Gröhn O, Harkin A, Heerschap A, Helluy X, Herfert K, Heuser A, Homberg J, Houwing D, Hyder F, Ielacqua G, Jelescu I, Johansen-Berg H, Kaneko G, Kawashima R, Keilholz S, Keliris G, Kelly C, Kerskens C, Khokhar J, Kind P, Langlois J, Lerch J, López-Hidalgo M, Manahan-Vaughan D, Marchand F, Mars R, Marsella G, Micotti E, Muñoz-Moreno E, Near J, Niendorf T, Otte W, Pais-Roldán P, Pan W, Prado-Alcalá R, Quirarte G, Rodger J, Rosenow T, Sampaio-Baptista C, Sartorius A, Sawiak S, Scheenen T, Shemesh N, Shih Y, Shmuel A, Soria G, Stoop R, Thompson G, Till S, Todd N, Van Der Linden A, van der Toorn A, van Tilborg G, Vanhove C, Veltien A, Verhoye M, Wachsmuth L, Weber-Fahr W, Wenk P, Yu X, Zerbi V, Zhang N, Zhang B, Zimmer L, Devenyi G, Chakravarty M, Hess A. A consensus protocol for functional connectivity analysis in the rat brain. Nature Neuroscience 2023, 26: 673-681. PMID: 36973511, PMCID: PMC10493189, DOI: 10.1038/s41593-023-01286-8.Peer-Reviewed Original ResearchHippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults
Reitlo L, Mihailovic J, Stensvold D, Wisløff U, Hyder F, Håberg A. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. GeroScience 2023, 45: 1667-1685. PMID: 36626020, PMCID: PMC10400748, DOI: 10.1007/s11357-022-00719-9.Peer-Reviewed Original ResearchConceptsSupervised exercise groupNational physical activity guidelinesPhysical activity guidelinesLower NAA/CrHippocampal bodyNAA/CrActivity guidelinesControl groupExercise groupLower Cho/CrPhysical activity/exerciseOlder adultsGeneration 100 StudyPsychological healthModerate physical activityActivity/exerciseDays/weekPeak oxygen uptakeCho/CrHigher training intensityMagnetic resonance imagingHigh-intensity trainingHippocampal metabolitesNeuronal viabilityHippocampal volume
2022
MR Imaging–Based In Vivo Macrophage Imaging to Monitor Immune Response after Radiofrequency Ablation of the Liver
Santana J, Petukhova-Greenstein A, Gross M, Hyder F, Pekurovsky V, Gottwald L, Boustani A, Walsh J, Kucukkaya A, Malpani R, Madoff D, Goldberg S, Ahmed M, Joshi N, Coman D, Chapiro J. MR Imaging–Based In Vivo Macrophage Imaging to Monitor Immune Response after Radiofrequency Ablation of the Liver. Journal Of Vascular And Interventional Radiology 2022, 34: 395-403.e5. PMID: 36423815, PMCID: PMC11042914, DOI: 10.1016/j.jvir.2022.11.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsContrast MediaImmunityLiverMacrophagesMagnetic Resonance ImagingMiceMice, Inbred C57BLRadiofrequency AblationConceptsImmune responseT1-weighted MRPrussian blue stainingRadiofrequency ablationRF ablationC57BL/6 wild-type miceMR imagingDose-escalation studyLocal immune responseMass cytometryWild-type miceRadiological-pathological correlationBlue stainingT1-weighted MR imagingHepatic radiofrequency ablationCD68 antibodyUntreated lobeVivo doseHepatic RF ablationVivo macrophagesMacrophagesMiceMR imaging scannerCoagulation areaCD68A 3D atlas of functional human brain energetic connectome based on neuropil distribution
Yu Y, Akif A, Herman P, Cao M, Rothman D, Carson R, Agarwal D, Evans A, Hyder F. A 3D atlas of functional human brain energetic connectome based on neuropil distribution. Cerebral Cortex 2022, 33: 3996-4012. PMID: 36104858, PMCID: PMC10068297, DOI: 10.1093/cercor/bhac322.Peer-Reviewed Original ResearchConceptsSynaptic densityCortical regionsHigher synapse densityHuman cortical circuitsFunctional imaging studiesCortical activity mapsVivo PET imagingNeuropil distributionGlucose oxidationSynapse densityCortical circuitsMetabolic rateSynaptic connectionsCortical energeticsImaging studiesHuman cortexPET imagingHistological stainingRecent evidenceCortexHuman brainBrainVoxel levelActivity ratesAtlas
2020
Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI
Kaczmarz S, Göttler J, Petr J, Hansen M, Mouridsen K, Zimmer C, Hyder F, Preibisch C. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. Cerebrovascular And Brain Metabolism Reviews 2020, 41: 380-396. PMID: 32237952, PMCID: PMC7812517, DOI: 10.1177/0271678x20912364.Peer-Reviewed Original ResearchConceptsInternal carotid artery stenosisRelative oxygen extraction fractionRelative cerebral blood volumeCerebral blood flowCapillary transit time heterogeneityOxygen extraction capacityCarotid artery stenosisHemodynamic impairmentCerebrovascular reactivityArtery stenosisUnilateral internal carotid artery stenosisAsymptomatic internal carotid artery stenosisAsymptomatic carotid artery stenosisAge-matched healthy controlsMultimodal MRICerebral blood volumeOxygen extraction fractionTransit time heterogeneityMicrovascular impairmentStroke riskOxygenation parametersWidespread dysfunctionHealthy controlsHemodynamic parametersIndividual patients
2016
Metabolic demands of neural-hemodynamic associated and disassociated areas in brain
Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. Cerebrovascular And Brain Metabolism Reviews 2016, 36: 1695-1707. PMID: 27562867, PMCID: PMC5076793, DOI: 10.1177/0271678x16664531.Peer-Reviewed Original ResearchConceptsVentral posterolateral thalamic nucleusFunctional magnetic resonance imagingMulti-unit activityLocal field potentialsMetabolic demandsPosterolateral thalamic nucleusBlood oxygenation level-dependent (BOLD) responseSensory-evoked responsesCortical local field potentialsThalamic local field potentialsMagnetic resonance imagingLevel-dependent responsesSimilar metabolic demandThalamic nucleiForelimb cortexBlood flowBlood volumeCBV responseResonance imagingLatency differenceHemodynamicsBOLD signalOxidative metabolismDifferent metabolic demandsField potentialsTowards longitudinal mapping of extracellular pH in gliomas
Huang Y, Coman D, Herman P, Rao JU, Maritim S, Hyder F. Towards longitudinal mapping of extracellular pH in gliomas. NMR In Biomedicine 2016, 29: 1364-1372. PMID: 27472471, PMCID: PMC5035200, DOI: 10.1002/nbm.3578.Peer-Reviewed Original ResearchConceptsSurgical interventionPlasma concentrationsU87 brain tumorsPreclinical modelsRenal clearanceSame subjectsTumor assessmentBrain tumorsProbe doseTherapeutic monitoringTranslational valueTumor characterizationLongitudinal scansChemical shift imaging techniqueThulium ionsMolecular imagingParamagnetic probesInterventionScansImaging techniquesSubjectsNon-exchangeable protonsChapter 5 New horizons in neurometabolic and neurovascular coupling from calibrated fMRI
Shu CY, Sanganahalli BG, Coman D, Herman P, Hyder F. Chapter 5 New horizons in neurometabolic and neurovascular coupling from calibrated fMRI. Progress In Brain Research 2016, 225: 99-122. PMID: 27130413, DOI: 10.1016/bs.pbr.2016.02.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainBrain MappingHumansImage Processing, Computer-AssistedMagnetic Resonance ImagingNeurotransmitter AgentsNeurovascular CouplingOxygenConceptsNeurovascular couplingFunctional MRINeuronal activityBlood oxygenation level-dependent (BOLD) signalFunctional brain activationLevel-dependent signalNeurometabolic couplingEffective therapyBlood flowNeuroimaging toolsHealth conditionsPowerful neuroimaging toolBrain activationBOLD signalNeural activityBOLD contrastMetabolic demandsOxygen consumptionDependent signalsTherapyMicrovesselsMRIActivityBiomarkersImaging the intratumoral–peritumoral extracellular pH gradient of gliomas
Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F. Imaging the intratumoral–peritumoral extracellular pH gradient of gliomas. NMR In Biomedicine 2016, 29: 309-319. PMID: 26752688, PMCID: PMC4769673, DOI: 10.1002/nbm.3466.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiosensing TechniquesBrain NeoplasmsCell Line, TumorExtracellular SpaceGliomaHydrogen-Ion ConcentrationImmunohistochemistryMagnetic Resonance ImagingMaleRats, Inbred F344ConceptsRG2 tumorsTumor typesKi-67-positive cellsCancer therapeutic responseAcidic pHeTherapeutic responseRat brainPositive cellsSolid tumorsTumor cell invasionTumor borderTumorsPeritumoral regionNormal tissuesCell invasionTumor pHeP-MRSCancer imagingNeutral intracellularImagingPreclinical applicationsInfusionTherapy
2015
Quantitative β mapping for calibrated fMRI
Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F. Quantitative β mapping for calibrated fMRI. NeuroImage 2015, 126: 219-228. PMID: 26619788, PMCID: PMC4733593, DOI: 10.1016/j.neuroimage.2015.11.042.Peer-Reviewed Original ResearchAnimalsCalibrationFunctional NeuroimagingMagnetic Resonance ImagingNeocortexNeurovascular CouplingRatsRats, Sprague-DawleyDendrimer-Based Responsive MRI Contrast Agents (G1–G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS)
Huang Y, Coman D, Hyder F, Ali MM. Dendrimer-Based Responsive MRI Contrast Agents (G1–G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Bioconjugate Chemistry 2015, 26: 2315-2323. PMID: 26497087, PMCID: PMC4784965, DOI: 10.1021/acs.bioconjchem.5b00568.Peer-Reviewed Original ResearchMeSH KeywordsBiosensing TechniquesContrast MediaDendrimersMagnetic Resonance ImagingOrganometallic CompoundsThuliumConceptsGn-PAMAMResponsive MRI contrast agentsNonexchangeable protonsRedundant deviationLigands/drugsChemical shift informationMRI contrast agentsMolecular imaging platformParamagnetic monomerModifiable surfaceBiocompatible macromoleculesContrast agentsDendrimersSurface modificationDrug deliveryModel dendrimersG2-PAMAMShift informationUnique propertiesTransverse relaxation timeTmDOTAFluorescent dyeMonomersMolecular imagingProminent signalDecreased Subcortical Cholinergic Arousal in Focal Seizures
Motelow JE, Li W, Zhan Q, Mishra AM, Sachdev RN, Liu G, Gummadavelli A, Zayyad Z, Lee HS, Chu V, Andrews JP, Englot DJ, Herman P, Sanganahalli BG, Hyder F, Blumenfeld H. Decreased Subcortical Cholinergic Arousal in Focal Seizures. Neuron 2015, 85: 561-572. PMID: 25654258, PMCID: PMC4319118, DOI: 10.1016/j.neuron.2014.12.058.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArousalBrain StemCholinergic NeuronsFemaleMagnetic Resonance ImagingOrgan Culture TechniquesRatsRats, Sprague-DawleySeizuresConceptsTemporal lobe seizuresFocal temporal lobe seizuresReduced cholinergic neurotransmissionBilateral temporal lobesLoss of consciousnessPedunculopontine tegmental nucleusQuality of lifeBrainstem arousal systemsFunctional magnetic resonanceSeizure spreadCholinergic neuronsImpaired consciousnessFocal seizuresBasal forebrainAnterior hypothalamusCholinergic neurotransmissionTegmental nucleusLateral septumCortical functionRodent modelsTemporal lobeSubcortical regionsSeizuresImpair consciousnessSubcortical arousal
2014
Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)
Maritim S, Huang Y, Coman D, Hyder F. Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS). JBIC Journal Of Biological Inorganic Chemistry 2014, 19: 1385-1398. PMID: 25304046, PMCID: PMC4348029, DOI: 10.1007/s00775-014-1200-z.Peer-Reviewed Original ResearchMeSH KeywordsBiosensing TechniquesContrast MediaCoordination ComplexesLanthanoid Series ElementsLiposomesMagnetic Resonance ImagingMolecular ImagingMolecular StructureConceptsLanthanide complexesMagnetic resonance imaging (MRI) probesParamagnetic lanthanide complexesT2 contrast agentsRedundant deviationMolecular imagingMRI contrast agentsNon-exchangeable protonsContrast agentsMRI contrastChemical shiftsMRI probesLiposomal encapsulation efficiencyParamagnetic environmentSignal amplificationEncapsulation efficiencyWater relaxationProbe environmentTransverse relaxation timeParamagnetic effectImaging probeHigh spatial resolutionParamagnetic agentsParamagnetic contrast agentRelaxation time
2013
Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI
Herman P, Sanganahalli BG, Blumenfeld H, Rothman DL, Hyder F. Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 15115-15120. PMID: 23980158, PMCID: PMC3773779, DOI: 10.1073/pnas.1307154110.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood VolumeCerebrovascular CirculationFunctional NeuroimagingMagnetic Resonance ImagingModels, NeurologicalOxygenRatsSomatosensory CortexConceptsCerebral blood volumeLocal field potentialsMultiunit activitySomatosensory cortexCortical laminaeBlood oxygenation level-dependent (BOLD) signalRat somatosensory cortexLevel-dependent signalNeurometabolic couplingCerebral cortexSuperficial laminaeCBF changesDeep laminaeMagnetic resonance imaging dataBlood flowQuantitative neuroimagingBlood volumeFunctional MRISensory stimulationBOLD signalOxidative metabolismCortexLayer-specific responsesMetabolic measurementsField potentialsIn vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution
Coman D, de Graaf R, Rothman DL, Hyder F. In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution. NMR In Biomedicine 2013, 26: 1589-1595. PMID: 23881869, PMCID: PMC3800475, DOI: 10.1002/nbm.2995.Peer-Reviewed Original ResearchConceptsK-spaceNonexchanging protonsThree-dimensional molecular imagingParamagnetic lanthanide ionsRedundant deviationChemical shift imagingField of viewMolecular imaging capabilitiesMolecular imagingRapid data acquisitionProton detectionLanthanide ionsTens of minutesImaging capabilitiesMacrocyclic chelatesSpectroscopic signalsMacrocyclicCSI experimentsRelaxation timeHigh spatiotemporal resolutionParamagnetic agentsIncreased resting functional connectivity in spike‐wave epilepsy in WAG/Rij rats
Mishra AM, Bai X, Motelow JE, DeSalvo MN, Danielson N, Sanganahalli BG, Hyder F, Blumenfeld H. Increased resting functional connectivity in spike‐wave epilepsy in WAG/Rij rats. Epilepsia 2013, 54: 1214-1222. PMID: 23815571, PMCID: PMC3703864, DOI: 10.1111/epi.12227.Peer-Reviewed Original ResearchConceptsSpike-wave dischargesWAG/RijFunctional connectivityNonepileptic controlsAbsence epilepsyEpileptic WAG/RijBrain networksWAG/Rij ratsChronic seizure activitySpike-wave epilepsyHuman absence seizuresChildhood absence epilepsyWistar Albino GlaxoActivity-dependent plasticityCortical-cortical connectivityFunctional magnetic resonance imagingMagnetic resonance imagingNonepileptic animalsSeizure activitySpontaneous episodesWistar controlsAbsence seizuresAdjacent cortexChronic changesAnimal modelsFunctional MRI and neural responses in a rat model of Alzheimer's disease
Sanganahalli BG, Herman P, Behar KL, Blumenfeld H, Rothman DL, Hyder F. Functional MRI and neural responses in a rat model of Alzheimer's disease. NeuroImage 2013, 79: 404-411. PMID: 23648961, PMCID: PMC3700380, DOI: 10.1016/j.neuroimage.2013.04.099.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseAnimalsBrainBrain MappingDisease Models, AnimalEvoked Potentials, SomatosensoryHumansMagnetic Resonance ImagingMaleNerve NetRatsRats, Long-EvansTouchConceptsAlzheimer's diseaseFunctional magnetic resonance imagingCerebral cortexAD brainSomatosensory cortexRat modelCortical functionNeural responsesAge-matched healthy controlsAD rat modelContralateral somatosensory cortexSensory-evoked responsesHigh-field functional magnetic resonance imagingBrain functional responsesMagnetic resonance imagingAD ratsControl ratsHealthy controlsThalamic responsesNormal ratsCortical responsesAD modelSubcortical functionBrain plaquesElectrical stimulation