2012
Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay
Alexandrov A, Colognori D, Shu MD, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 21313-21318. PMID: 23236153, PMCID: PMC3535618, DOI: 10.1073/pnas.1219725110.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCarrier ProteinsEukaryotic Initiation Factor-4AEukaryotic Initiation Factor-4GExonsGene Knockdown TechniquesHEK293 CellsHeLa CellsHumansMolecular Sequence DataMutationNonsense Mediated mRNA DecayNuclear ProteinsPeptidylprolyl IsomeraseProtein BindingRNA SplicingRNA-Binding ProteinsRNA, MessengerSpliceosomesConceptsExon junction complexEJC depositionMultiprotein exon junction complexNonsense-mediated decay pathwayNonsense-mediated decaySpecific roleEJC assemblyEJC formationComplex eukaryotesDisrupts associationMetazoan mRNAsSpliceosomal proteinsCellular mRNAsHost genesSplicing defectsJunction complexDownstream eventsSplicingNatural substrateDecay pathwaysCWC22Depletion yieldsNMDMutationsMRNA
2008
Where in the cell is the minor spliceosome?
Steitz JA, Dreyfuss G, Krainer AR, Lamond AI, Matera AG, Padgett RA. Where in the cell is the minor spliceosome? Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 8485-8486. PMID: 18562285, PMCID: PMC2438384, DOI: 10.1073/pnas.0804024105.Peer-Reviewed Original ResearchMinor-class splicing occurs in the nucleus of the Xenopus oocyte
Friend K, Kolev NG, Shu MD, Steitz JA. Minor-class splicing occurs in the nucleus of the Xenopus oocyte. RNA 2008, 14: 1459-1462. PMID: 18567814, PMCID: PMC2491479, DOI: 10.1261/rna.1119708.Peer-Reviewed Original ResearchConceptsSmall nuclear ribonucleoproteinMinor class intronsU12-type splicingXenopus oocytesU12-dependent intronsNuclear envelope breakdownCertain eukaryotesMinor spliceosomeVertebrate cellsSplicing substrateNuclear compartmentNuclear ribonucleoproteinRNA intronsAccurate splicingEnvelope breakdownSplicingIntronsCytoplasmOocytesEukaryotesSpliceosomeMeiosisRibonucleoproteinNucleusSmall fraction
2006
A Spliceosomal Intron Binding Protein, IBP160, Links Position-Dependent Assembly of Intron-Encoded Box C/D snoRNP to Pre-mRNA Splicing
Hirose T, Ideue T, Nagai M, Hagiwara M, Shu MD, Steitz JA. A Spliceosomal Intron Binding Protein, IBP160, Links Position-Dependent Assembly of Intron-Encoded Box C/D snoRNP to Pre-mRNA Splicing. Molecular Cell 2006, 23: 673-684. PMID: 16949364, DOI: 10.1016/j.molcel.2006.07.011.Peer-Reviewed Original Research
2004
Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay
Hirose T, Shu MD, Steitz JA. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 17976-17981. PMID: 15608055, PMCID: PMC539812, DOI: 10.1073/pnas.0408435102.Peer-Reviewed Original ResearchMeSH KeywordsCell LineCell NucleusCodon, NonsenseDNA, ComplementaryEvolution, MolecularExonsGene Expression RegulationHeLa CellsHumansImmunoprecipitationIntronsMutagenesis, Site-DirectedOpen Reading FramesPlasmidsRibonuclease HRibonucleoproteins, Small NuclearRNARNA PrecursorsRNA SplicingRNA, MessengerRNA, Small NuclearSpliceosomesTime FactorsTransfectionConceptsExon junction complexU12-type intronsOpen reading frameNonsense-mediated mRNA decayU12-type spliceosomeNonsense-mediated decaySmall nuclear ribonucleoproteinU2-type spliceosomePremature termination codonEJC assemblyMetazoan cellsMRNA decayEvolutionary ageDownstream functionsIntron removalNuclear ribonucleoproteinReading frameExon junctionsTermination codonJunction complexGene expressionIntron downstreamSpliceosomeIntronsSplicingGuide RNAs with 5′ Caps and Novel Box C/D snoRNA-like Domains for Modification of snRNAs in Metazoa
Tycowski KT, Aab A, Steitz JA. Guide RNAs with 5′ Caps and Novel Box C/D snoRNA-like Domains for Modification of snRNAs in Metazoa. Current Biology 2004, 14: 1985-1995. PMID: 15556860, DOI: 10.1016/j.cub.2004.11.003.Peer-Reviewed Original ResearchConceptsModification guide RNAsGuide RNABox C/D snoRNAsInvariant G residueKink-turn structureGuide RNA genesShort guide RNASmall ribonucleoprotein particlesMetazoan organismsAncestral metazoanGuanosine capMetazoan cellsSingle intronD snoRNAsRNA genesSpliceosomal snRNAsTelomerase RNARibosomal RNASuch RNAsRibonucleoprotein particleMetazoansUpstream promoterIntronsG residuesCommon modificationAn Intronic Enhancer Regulates Splicing of the Twintron of Drosophila melanogaster prospero Pre-mRNA by Two Different Spliceosomes
Scamborova P, Wong A, Steitz JA. An Intronic Enhancer Regulates Splicing of the Twintron of Drosophila melanogaster prospero Pre-mRNA by Two Different Spliceosomes. Molecular And Cellular Biology 2004, 24: 1855-1869. PMID: 14966268, PMCID: PMC350559, DOI: 10.1128/mcb.24.5.1855-1869.2004.Peer-Reviewed Original ResearchConceptsPurine-rich elementSplicing pathwaySplice siteU12-type spliceosomeU12-type splicingVitro splicing systemForms of mRNAAlternative splicingEarly embryogenesisKc cellsIntron sequencesPre-mRNASystematic deletionIntronic enhancerSplicingSequence requirementsIntron regionsEnhancer elementsNucleotides downstreamMolecular mechanismsTwintronSpliceosomeSplicing systemMutation analysisPathway
2003
Splicing double: insights from the second spliceosome
Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nature Reviews Molecular Cell Biology 2003, 4: 960-970. PMID: 14685174, DOI: 10.1038/nrm1259.Peer-Reviewed Original ResearchConceptsMinor class intronsPhylogenetic analysisU12-type intronsMost multicellular organismsSmall nuclear RNASmall nuclear ribonucleoproteinParticular functional classNon-homologous positionsMessenger RNA interactionsMost metazoan taxaParalogous genesMulticellular organismsSpliceosomal factorsHomologous genesEvolutionary historyMetazoan taxaU5 snRNPSplicing machineryAcceptor splice siteAlternative splicingRNA interactionsU6 snRNPsNuclear RNANuclear ribonucleoproteinSplicing reactionSplicing-Dependent and -Independent Modes of Assembly for Intron-Encoded Box C/D snoRNPs in Mammalian Cells
Hirose T, Shu MD, Steitz JA. Splicing-Dependent and -Independent Modes of Assembly for Intron-Encoded Box C/D snoRNPs in Mammalian Cells. Molecular Cell 2003, 12: 113-123. PMID: 12887897, DOI: 10.1016/s1097-2765(03)00267-3.Peer-Reviewed Original ResearchConceptsBox C/D snoRNAsSplice siteSnoRNP proteinsD snoRNAsSnoRNP assemblyMammalian cellsHost intronBox C/D snoRNPsSmall nucleolar RNAsD snoRNPsRRNA modificationNucleolar RNAsHost genesActive splicingNts upstreamIntronsEfficient expressionSnoRNAsStable stemSplicingVivo analysisProteinAssemblyBlockage experimentsStem
2002
Branchpoint selection in the splicing of U12-dependent introns in vitro.
McConnell TS, Cho SJ, Frilander MJ, Steitz JA. Branchpoint selection in the splicing of U12-dependent introns in vitro. RNA 2002, 8: 579-86. PMID: 12022225, PMCID: PMC1370279, DOI: 10.1017/s1355838202028029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceHumansIn Vitro TechniquesIntronsModels, GeneticPol1 Transcription Initiation Complex ProteinsRibonucleoproteins, Small NuclearRibosomal ProteinsRNARNA SplicingRNA-Binding ProteinsSaccharomyces cerevisiae ProteinsSpliceosomesTranscription FactorsXenopusXenopus ProteinsConceptsU12-dependent intronsU12-type intronsSixth intronBranchpoint sequenceSplicing of intronsU12-type splicingU12-type spliceosomeU12-dependent splicingBase-pairing mechanismHeLa nuclear extractsAdditional intronConsecutive adenosinesSplicing substrateThird intronU12 snRNAHuman p120First intronIntronsNuclear extractsSplicingGenesBranch sitePathwayBranchpointP120The Divergent U12-Type Spliceosome Is Required for Pre-mRNA Splicing and Is Essential for Development in Drosophila
Otake LR, Scamborova P, Hashimoto C, Steitz JA. The Divergent U12-Type Spliceosome Is Required for Pre-mRNA Splicing and Is Essential for Development in Drosophila. Molecular Cell 2002, 9: 439-446. PMID: 11864616, DOI: 10.1016/s1097-2765(02)00441-0.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAnimalsAnimals, Genetically ModifiedBase SequenceDrosophila melanogasterDrosophila ProteinsGenes, LethalIntronsLarvaMolecular Sequence DataMutagenesis, InsertionalNerve Tissue ProteinsNuclear ProteinsNucleic Acid ConformationProtein IsoformsRibonucleoprotein, U4-U6 Small NuclearRibonucleoproteins, Small NuclearRNA PrecursorsRNA SplicingRNA, Small NuclearSequence AlignmentSequence Homology, Nucleic AcidSpliceosomesTranscription FactorsTransgenesConceptsU12-type spliceosomeThird instar larvalU12-type intronsPre-mRNA splicingU4atac/U6atacMetazoan organismsHomeodomain proteinsU5 snRNPsDrosophila melanogasterU12 spliceosomeMRNA intronsU12 snRNASingle locusU6atacInstar larvalSpliceosomeEmbryonic stagesCNS developmentIntronsMinor classU12DrosophilaMelanogasterVertebratesSnRNPs
2001
Dynamic Exchanges of RNA Interactions Leading to Catalytic Core Formation in the U12-Dependent Spliceosome
Frilander M, Steitz J. Dynamic Exchanges of RNA Interactions Leading to Catalytic Core Formation in the U12-Dependent Spliceosome. Molecular Cell 2001, 7: 217-226. PMID: 11172726, DOI: 10.1016/s1097-2765(01)00169-1.Peer-Reviewed Original Research
1998
Modification of U6 Spliceosomal RNA Is Guided by Other Small RNAs
Tycowski K, You Z, Graham P, Steitz J. Modification of U6 Spliceosomal RNA Is Guided by Other Small RNAs. Molecular Cell 1998, 2: 629-638. PMID: 9844635, DOI: 10.1016/s1097-2765(00)80161-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell FractionationCell LineCell NucleolusChromosomal Proteins, Non-HistoneDimerizationHeLa CellsHumansMethylationMiceMolecular Sequence DataNucleic Acid ConformationOligodeoxyribonucleotides, AntisenseOocytesPrecipitin TestsRibonuclease HRNA, Ribosomal, 28SRNA, Small NuclearSpliceosomesXenopus laevisModifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing
Yu Y, Shu M, Steitz J. Modifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing. The EMBO Journal 1998, 17: 5783-5795. PMID: 9755178, PMCID: PMC1170906, DOI: 10.1093/emboj/17.19.5783.Peer-Reviewed Original ResearchConceptsEnd of U2Native gel analysisPre-mRNA splicingU2 snRNP particleGlycerol gradient analysisPseudouridylation activityGuanosine capSnRNP assemblySpliceosomal snRNAsSplicing activityTMG capSpliceosome assemblyU2 RNAU2 snRNAU2 functionProtein profilesGel analysisSnRNP particlesXenopus oocytesInternal modificationSnRNASplicingPotent inhibitorU2Extensive modification
1997
Inhibition of mammalian spliceosome assembly and pre-mRNA splicing by peptide inhibitors of protein kinases.
Parker AR, Steitz JA. Inhibition of mammalian spliceosome assembly and pre-mRNA splicing by peptide inhibitors of protein kinases. RNA 1997, 3: 1301-12. PMID: 9409621, PMCID: PMC1369569.Peer-Reviewed Original ResearchConceptsCalmodulin binding domainMammalian spliceosome assemblySpliceosome assemblyMRNA splicingSplicing activityCaMK IIGS peptideProtein kinase CAutophosphorylation eventsCalmodulin kinase IIProlonged incubationProtein kinaseSplicing reactionSplicing assaysBinding domainsKinase IISplicingKinase CPeptide inhibitorDistinct mechanismsProteinKinaseCompetitive inhibitorAssemblyDistinct eventsSite-specific crosslinking of mammalian U11 and U6atac to the 5′ splice site of an AT–AC intron
Yu Y, Steitz J. Site-specific crosslinking of mammalian U11 and U6atac to the 5′ splice site of an AT–AC intron. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 6030-6035. PMID: 9177163, PMCID: PMC20995, DOI: 10.1073/pnas.94.12.6030.Peer-Reviewed Original ResearchPre-mRNA splicing: the discovery of a new spliceosome doubles the challenge
Tarn W, Steitz J. Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends In Biochemical Sciences 1997, 22: 132-137. PMID: 9149533, DOI: 10.1016/s0968-0004(97)01018-9.Peer-Reviewed Original Research
1996
More Sm snRNAs from Vertebrate Cells
Yu Y, Tarn W, Yario T, Steitz J. More Sm snRNAs from Vertebrate Cells. Experimental Cell Research 1996, 229: 276-281. PMID: 8986610, DOI: 10.1006/excr.1996.0372.Peer-Reviewed Original ResearchHighly Diverged U4 and U6 Small Nuclear RNAs Required for Splicing Rare AT-AC Introns
Tarn W, Steitz J. Highly Diverged U4 and U6 Small Nuclear RNAs Required for Splicing Rare AT-AC Introns. Science 1996, 273: 1824-1832. PMID: 8791582, DOI: 10.1126/science.273.5283.1824.Peer-Reviewed Original Research
1994
SR proteins can compensate for the loss of U1 snRNP functions in vitro.
Tarn WY, Steitz JA. SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes & Development 1994, 8: 2704-2717. PMID: 7958927, DOI: 10.1101/gad.8.22.2704.Peer-Reviewed Original ResearchConceptsSR proteinsSplice site recognitionSplice siteU1 snRNPsU1 snRNP functionsEssential splicing factorPre-mRNA substrateSplice site choiceNative gel analysisSplice site selectionMethyl oligoribonucleotideCross-linking studiesSnRNP functionSplicing factorsU1 snRNPU1 snRNASite recognitionSite choiceGel analysisRescue splicingProteinSplicing systemIntronsSnRNPs