Omicron SARS-CoV-2 Spike-1 Protein’s Decreased Binding Affinity to α7nAChr: Implications for Autonomic Dysregulation of the Parasympathetic Nervous System and the Cholinergic Anti-Inflammatory Pathway—An In Silico Analysis
Doria D, Santin A, Tuszynski J, Scheim D, Aminpour M. Omicron SARS-CoV-2 Spike-1 Protein’s Decreased Binding Affinity to α7nAChr: Implications for Autonomic Dysregulation of the Parasympathetic Nervous System and the Cholinergic Anti-Inflammatory Pathway—An In Silico Analysis. BioMedInformatics 2022, 2: 553-564. DOI: 10.3390/biomedinformatics2040035.Peer-Reviewed Original ResearchSpike 1 proteinCholinergic anti-inflammatory pathwayAnti-inflammatory pathwayGenetic alterationsParasympathetic nervous systemOmicron infectionCOVID-19 variantsAutonomic dysregulationClinical dataPreclinical resultsNatural immunitySevere formAnimal modelsNervous systemΑ7nAChRTherapeutic antibodiesAttenuation of virulenceCOVID-19InfectionPrevious variantsAttenuated natureOmicronDominant strainAlterationsHumansIn Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds
Aminpour M, Cannariato M, Preto J, Safaeeardebili M, Moracchiato A, Doria D, Donato F, Zizzi E, Deriu M, Scheim D, Santin A, Tuszynski J. In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. Computation 2022, 10: 51. DOI: 10.3390/computation10040051.Peer-Reviewed Original ResearchAnti-inflammatory pathwaySARS-CoV-2 virusAlpha 7 nicotinic acetylcholine receptorCholinergic anti-inflammatory pathwayAnti-viral effectsActivity of ivermectinNicotinic acetylcholine receptorsBiological mechanismsVagus nerveCytokine productionImmune cellsClinical studiesCD147 receptorViral penetrationAcetylcholine receptorsNeuronal tissueIvermectinMolecular targetsHigh affinitySpike glycoproteinPhysiological concentrationsMorbidityCOVID-19VirusReceptors