2019
Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications
Vinholo T, Brownstein AJ, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. Aorta 2019, 07: 099-107. PMID: 31842235, PMCID: PMC6914358, DOI: 10.1055/s-0039-3400233.Peer-Reviewed Original ResearchGlobal gene expression of histologically normal primary skin cells from BCNS subjects reveals “single-hit” effects that are influenced by rapamycin
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals “single-hit” effects that are influenced by rapamycin. Oncotarget 2019, 10: 1360-1387. PMID: 30858923, PMCID: PMC6402716, DOI: 10.18632/oncotarget.26640.Peer-Reviewed Original ResearchGlobal gene expressionRapamycin treatmentGene expression changesGene expression profilingPresence of rapamycinBiomarkers/targetsExpression profilingGene expressionExpression changesPrimary cell culturesWnt pathwayCanonical HhGenesProbe setsMitochondrial dysfunctionStellate cell activationUnaffected skin biopsiesHeritable cancersPrimary skin cellsStem cellsRapamycinDevelopmental abnormalitiesDifferential responseGene signatureNormal fibroblasts
2017
Whole-exome sequencing in evaluation of patients with venous thromboembolism
Lee EJ, Dykas DJ, Leavitt AD, Camire RM, Ebberink E, García de Frutos P, Gnanasambandan K, Gu SX, Huntington JA, Lentz SR, Mertens K, Parish CR, Rezaie AR, Sayeski PP, Cromwell C, Bar N, Halene S, Neparidze N, Parker TL, Burns AJ, Dumont A, Yao X, Chaar CIO, Connors JM, Bale AE, Lee AI. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Advances 2017, 1: 1224-1237. PMID: 29296762, PMCID: PMC5728544, DOI: 10.1182/bloodadvances.2017005249.Peer-Reviewed Original ResearchWhole-exome sequencingVenous thromboembolismStudy patientsThrombophilia panelVTE patientsHeritable thrombophiliaThrombophilia testingDisease-causing genetic variantsEvaluation of patientsControl patientsThrombophilia mutationsProtein modelingThrombotic historyProtein structurePatientsThrombophilia genesVTE pathogenesisWES variantsUnknown significanceThrombophiliaGenetic variantsGenesPrior reportsSequencingThromboembolism
2006
Drosophila homologs of FANCD2 and FANCL function in DNA repair
Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair 2006, 5: 1317-1326. PMID: 16860002, DOI: 10.1016/j.dnarep.2006.05.044.Peer-Reviewed Original ResearchConceptsCross-linking agentsDNA repairFA genesDrosophila homologFanconi anemiaFA pathwayMonoubiquitination of FANCD2Elevated mutation ratesS-phase checkpointProgressive bone marrow failureSpontaneous chromosomal aberrationsMinimal machineryFly homologMammalian cellsAdditional genesFANCD2FANCLLinear pathwayDevelopmental defectsMutation rateCellular defectsHomologGenesBone marrow failureMutants
2004
Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1
Busygina V, Suphapeetiporn K, Marek LR, Stowers RS, Xu T, Bale AE. Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Human Molecular Genetics 2004, 13: 2399-2408. PMID: 15333582, DOI: 10.1093/hmg/ddh271.Peer-Reviewed Original ResearchConceptsDNA cross-linking agentsNucleotide excision repairDNA damage-induced mutationsTumor suppressor geneDamage-induced mutationsDrosophila homologGenomic integrityHuman meninMutant fliesBiochemical functionsTranscriptional modulationNuclear proteinsDrosophila modelProtein 50Novel memberExcision repairNull allelesMolecular mechanismsCancer genesHistone deacetylaseSuppressor geneHomozygous inactivationMnn1Normal fliesGenes
2002
Immunolocalization of PTCH Protein in Odontogenic Cysts and Tumors
Barreto D, Bale A, De Marco L, Gomez R. Immunolocalization of PTCH Protein in Odontogenic Cysts and Tumors. Journal Of Dental Research 2002, 81: 757-760. PMID: 12407090, DOI: 10.1177/0810757.Peer-Reviewed Original ResearchHEDGEHOG SIGNALING AND HUMAN DISEASE
Bale AE. HEDGEHOG SIGNALING AND HUMAN DISEASE. Annual Review Of Genomics And Human Genetics 2002, 3: 47-65. PMID: 12142354, DOI: 10.1146/annurev.genom.3.022502.103031.Peer-Reviewed Original ResearchConceptsEarly Drosophila developmentHedgehog pathwayDrosophila developmentDevelopmental genesDrosophila melanogasterHuman embryogenesisHedgehog signalingDevelopmental pathwaysGenetic studiesHuman diseasesCell growthEmbryogenesisPathwayKey roleMelanogasterVertebratesImportant roleCentral nervous systemAxial skeletonGenesNervous systemSignalingMutationsDifferentiationRegulation
2001
The hedgehog pathway and basal cell carcinomas
Bale A, Yu K. The hedgehog pathway and basal cell carcinomas. Human Molecular Genetics 2001, 10: 757-762. PMID: 11257109, DOI: 10.1093/hmg/10.7.757.Peer-Reviewed Original ResearchConceptsGenetic studiesHereditary basal cell carcinomasDrosophila genesEmbryonic patterningDevelopmental genesDrosophila melanogasterCell fateHuman homologFruit flyHuman congenital anomaliesBiochemical pathwaysRational medical therapyDevelopmental pathwaysHedgehog pathwayGenesCell growthTumor formationPathwayGorlin syndromeBasal cell carcinomaMutationsHereditary diseaseBirth defectsDrosophilaMelanogaster
2000
Identification of PATCHED mutations in medulloblastomas by direct sequencing
Dong J, Gailani M, Pomeroy S, Reardon D, Bale A. Identification of PATCHED mutations in medulloblastomas by direct sequencing. Human Mutation 2000, 16: 89-90. PMID: 10874314, DOI: 10.1002/1098-1004(200007)16:1<89::aid-humu18>3.0.co;2-7.Peer-Reviewed Original ResearchConceptsSingle-strand conformational polymorphismSporadic medulloblastomasPTCH genePatched mutationsAberrant splicingPTCH proteinSSCP screeningMutant allelesStrand conformational polymorphismSplice site alterationsChromosome 9q22Nonsense mutationSite alterationMutationsFrequency of mutationsConformational polymorphismDNA samplesMalignant embryonic tumorGenesNovel variantsPTCH mutationsDirect sequencingAllelesNevoid basal cell carcinoma syndromePtch allelePTCH Gene Mutations in Odontogenic Keratocysts
Barreto D, Gomez R, Bale A, Boson W, De Marco L. PTCH Gene Mutations in Odontogenic Keratocysts. Journal Of Dental Research 2000, 79: 1418-1422. PMID: 10890722, DOI: 10.1177/00220345000790061101.Peer-Reviewed Original ResearchMeSH KeywordsAdultAmino Acid SubstitutionBasal Cell Nevus SyndromeBase PairingCodon, NonsenseEmbryonic InductionExonsFemaleFrameshift MutationGene DeletionGenes, Tumor SuppressorHedgehog ProteinsHumansMaleMembrane ProteinsMutationMutation, MissenseOdontogenic CystsPatched ReceptorsPatched-1 ReceptorPolymerase Chain ReactionPolymorphism, Single-Stranded ConformationalProteinsReceptors, Cell SurfaceSequence Analysis, DNASignal TransductionTrans-ActivatorsConceptsPTCH geneTumor suppressor geneSingle-strand conformational polymorphismCell fateTransmembrane proteinHuman homologueSuppressor geneBase pairsGenesNumerous tissuesMissense alterationsSporadic keratocystsSporadic odontogenic keratocystsMutationsSomatic mutationsExon 3Nevoid basal cell carcinoma syndromeConformational polymorphismNovel mutationsPCR productsProteinDirect sequencingGene mutationsPTCH gene mutationsPatched
1999
The hedgehog signalling pathway in tumorigenesis and development
Wicking C, Smyth I, Bale A. The hedgehog signalling pathway in tumorigenesis and development. Oncogene 1999, 18: 7844-7851. PMID: 10630637, DOI: 10.1038/sj.onc.1203282.Peer-Reviewed Original ResearchConceptsDownstream targetsNovel downstream targetTumor formationEmbryonic patterningDysregulation of hedgehogResponsive genesHuman patched geneRange of tissuesHedgehog signalingConstitutive activationMolecular processesTumorigenesis resultsCell typesHedgehogCell surfaceReceptor complexPatched genePathwayGenesKey membersTumorigenesisSporadic formsDysregulationSignalingTumor typesMutational Analyses of Candidate Genes in Human Squamous Cell Carcinomas
Petroianu A, Boson W, Bale A, Friedman E, De Marco L. Mutational Analyses of Candidate Genes in Human Squamous Cell Carcinomas. The Laryngoscope 1999, 109: 661-663. PMID: 10201760, DOI: 10.1097/00005537-199904000-00027.Peer-Reviewed Original ResearchConceptsSquamous cell carcinomaCell carcinomaPolymerase chain reactionPrimary squamous cell carcinomaHuman squamous cell carcinomaEvidence of mutationsPresence of mutationsCommon malignancyUnselected populationCarcinomaStudy designMajor causeChain reactionPatientsCandidate genesPatched geneMolecular mechanismsTumorigenesisMutationsSequence alterationsMalignancyConformational polymorphismTumorsGenesMortality
1997
Molecular basis of the nevoid basal cell carcinoma syndrome
Wicking C, Bale A. Molecular basis of the nevoid basal cell carcinoma syndrome. Current Opinion In Pediatrics 1997, 9: 630-635. PMID: 9425597, DOI: 10.1097/00008480-199712000-00013.Peer-Reviewed Original ResearchConceptsWidespread developmental defectsHereditary basal cell carcinomasDrosophila genesEmbryonic patterningCell fateEmbryonic developmentHuman homologueMolecular basisDevelopmental defectsTumor suppressorCancer predispositionGenesLoss of heterozygosityCell growthChromosome 9q22.3Basal cell carcinoma syndromeNevoid basal cell carcinoma syndromeMutationsAutosomal dominant disorderBirth defectsDrosophilaDominant disorderCarcinoma syndromeOrganogenesisHomologuesDevelopmental Genes and Cancer: Role of Patched in Basal Cell Carcinoma of the Skin
Gailani M, Bale A. Developmental Genes and Cancer: Role of Patched in Basal Cell Carcinoma of the Skin. Journal Of The National Cancer Institute 1997, 89: 1103-1109. PMID: 9262247, DOI: 10.1093/jnci/89.15.1103.Peer-Reviewed Original ResearchConceptsHereditary basal cell carcinomasDrosophila genesEmbryonic patterningDevelopmental genesCell fateEmbryonic developmentHuman homologueSporadic basal cell carcinomasBiochemical pathwaysDevelopmental defectsRational medical therapyTumor suppressorGenetic studiesGenesLoss of heterozygosityCell growthChromosome 9q22.3Rare genetic disorderNevoid basal cell carcinoma syndromeBCC formationGenetic disordersBasal cell carcinomaPathwayDrosophilaPatchedCharacterization of a YAC contig containing the NBCCS locus and a novel Kruppel‐type zinc finger sequence on chromosome segment 9q22.3
Chidambaram A, Gailani M, Gerrard B, Stewart C, Goldstein A, Chumakov I, Bale A, Dean M. Characterization of a YAC contig containing the NBCCS locus and a novel Kruppel‐type zinc finger sequence on chromosome segment 9q22.3. Genes Chromosomes And Cancer 1997, 18: 212-218. PMID: 9071574, DOI: 10.1002/(sici)1098-2264(199703)18:3<212::aid-gcc7>3.0.co;2-4.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBasal Cell Nevus SyndromeBase SequenceChromosome MappingChromosomes, Artificial, YeastChromosomes, Human, Pair 9CosmidsCpG IslandsDNA-Binding ProteinsDNA, ComplementaryGene DeletionGenomic LibraryHeterozygoteHumansKruppel-Like Transcription FactorsMicrosatellite RepeatsMolecular Sequence DataPolymerase Chain ReactionRepressor ProteinsSequence Analysis, DNASequence Tagged SitesTranscription FactorsZinc FingersConceptsSomatic cell hybrid panel analysisYAC contigNew zinc finger geneZinc finger geneHuman chromosome regionYeast artificial chromosome contigInformative microsatellite lociArtificial chromosome contigZinc finger sequencesPolymorphic marker lociFinger geneMicrosatellite lociChromosome regionsMarker lociDevelopmental defectsSite mappingLinkage analysisContigsLoss of heterozygosityCytogenetic evidenceLociGenesNevoid basal cell carcinoma syndromeAutosomal dominant disorderFinger sequencesPulsed-field gel electrophoresis and FISH mapping of chromosome 9q22: placement of a novel zinc finger gene within the NBCCS and ESS1 region
Levanat S, Chidambaram A, Wicking C, Bray-Ward P, Pressman C, Toftgard R, Gailani M, Myers J, Wainwright B, Dean M, Bale A. Pulsed-field gel electrophoresis and FISH mapping of chromosome 9q22: placement of a novel zinc finger gene within the NBCCS and ESS1 region. Cytogenetic And Genome Research 1997, 76: 208-213. PMID: 9186526, DOI: 10.1159/000134551.Peer-Reviewed Original ResearchConceptsNovel zinc finger geneChromosome 9q22Gene-rich regionsZinc finger geneHuman disease lociGel electrophoresisFISH mappingFinger genePFGE fragmentsNotI fragmentsRestriction fragment lengthDisease locusD9S196Field gel electrophoresisD9S180FishFragment lengthGenesKbInterphase FISHPulsed-field gel electrophoresisElectrophoresisFragmentsCOL15A1Loci
1996
The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas
Gailani M, Ståhle-Bäckdahl M, Leffell D, Glyn M, Zaphiropoulos P, Undén A, Dean M, Brash D, Bale A, Toftgård R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics 1996, 14: 78-81. PMID: 8782823, DOI: 10.1038/ng0996-78.Peer-Reviewed Original ResearchConceptsSporadic basal cell carcinomasSingle-strand conformational polymorphismTumor suppressorDrosophila segment polarity geneSegment polarity genesHedgehog target genesPolarity genesDrosophila mutantsStrong homologyHuman homologueTarget genesMutational inactivationMutant transcriptsStrand conformational polymorphismNorthern blotSSCP variantsGenesNegative feedback mechanismSitu hybridizationConformational polymorphismNevoid basal cell carcinoma syndromeSuppressorAllelic lossInactivationMutationsMutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome
Hahn H, Wicking C, Zaphiropoulos P, Gailani M, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden A, Gillies S, Negus K, Smyth I, Pressman C, Leffell D, Gerrard B, Goldstein A, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale A. Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome. Cell 1996, 85: 841-851. PMID: 8681379, DOI: 10.1016/s0092-8674(00)81268-4.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsBasal Cell Nevus SyndromeBase SequenceChromosome MappingChromosomes, Human, Pair 9Cloning, MolecularDNA, ComplementaryDrosophilaDrosophila ProteinsExonsFemaleGene DeletionGene ExpressionGenes, Tumor SuppressorHumansIn Vitro TechniquesInsect HormonesIntronsMembrane ProteinsMolecular Sequence DataMutationPedigreeReceptors, Cell SurfaceSequence Homology, Nucleic AcidConceptsDrosophila segment polarity geneSegment polarity genesCertain cell typesDevelopmental abnormalitiesPolarity genesHuman homologStrong homologySporadic basal cell carcinomasHuman sequenceCosmid contigTumor suppressorLoss of heterozygosityCell typesGenesPatched geneChromosome 9q22.3Complete lossFunction contributesNevoid basal cell carcinoma syndromeMutation analysisBasal cell carcinoma syndromeAutosomal dominant disorderNBCCS patientsDrosophilaDominant disorder
1995
The Gorlin syndrome gene: a tumor suppressor active in basal cell carcinogenesis and embryonic development.
Bale A, Gailani M, Leffell D. The Gorlin syndrome gene: a tumor suppressor active in basal cell carcinogenesis and embryonic development. Proceedings Of The Association Of American Physicians 1995, 107: 253-7. PMID: 8624861.Peer-Reviewed Original Research
1994
Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal.
Friedman E, Bale A, Carson E, Boson W, Nordenskjöld M, Ritzén M, Ferreira P, Jammal A, De Marco L. Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 8457-8461. PMID: 8078903, PMCID: PMC44625, DOI: 10.1073/pnas.91.18.8457.Peer-Reviewed Original ResearchConceptsVasopressin type 2 receptor geneInheritance patternSixth transmembrane domainVasopressin type 2 receptorDisease-related genesNephrogenic diabetes insipidusGradient gel electrophoresisTransmembrane domainV2R genesType 2 receptor geneX chromosomeXq28 markersDominant inheritance patternGenesDNA sequencingDirect DNA sequencingReceptor geneGel electrophoresisMutationsUnrelated kindredsAdditional familiesRecessive mannerDisease pathogenesisLarge BrazilianAffected individuals