Featured Publications
Behavioural immune landscapes of inflammation
Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG, Li JLY, Madurga R, Adrover JM, Aroca-Crevillén A, Martin-Salamanca S, del Valle AS, Castillo SD, Welch HCE, Soehnlein O, Graupera M, Sánchez-Cabo F, Zarbock A, Smithgall TE, Di Pilato M, Mempel TR, Tharaux PL, González SF, Ayuso-Sacido A, Ng LG, Calvo GF, González-Díaz I, Díaz-de-María F, Hidalgo A. Behavioural immune landscapes of inflammation. Nature 2022, 601: 415-421. PMID: 34987220, PMCID: PMC10022527, DOI: 10.1038/s41586-021-04263-y.Peer-Reviewed Original ResearchCo-option of Neutrophil Fates by Tissue Environments
Ballesteros I, Rubio-Ponce A, Genua M, Lusito E, Kwok I, Fernández-Calvo G, Khoyratty TE, van Grinsven E, González-Hernández S, Nicolás-Ávila JÁ, Vicanolo T, Maccataio A, Benguría A, Li JL, Adrover JM, Aroca-Crevillen A, Quintana JA, Martín-Salamanca S, Mayo F, Ascher S, Barbiera G, Soehnlein O, Gunzer M, Ginhoux F, Sánchez-Cabo F, Nistal-Villán E, Schulz C, Dopazo A, Reinhardt C, Udalova IA, Ng LG, Ostuni R, Hidalgo A. Co-option of Neutrophil Fates by Tissue Environments. Cell 2020, 183: 1282-1297.e18. PMID: 33098771, DOI: 10.1016/j.cell.2020.10.003.Peer-Reviewed Original ResearchConceptsNeutrophil fateDepletion of neutrophilsHematopoietic recoveryVascular repairNeutrophil statesNeutrophil propertiesViral infectionNeutrophilsTarget tissuesHealthy tissueGenotoxic injuryEarly ageMultiple tissuesTissueTissue environmentPhysiological demandsInflammationHematopoietic homeostasisCXCR4LungNon-canonical functionsInjuryCancerInfectionLeukocytesA Network of Macrophages Supports Mitochondrial Homeostasis in the Heart
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020, 183: 94-109.e23. PMID: 32937105, DOI: 10.1016/j.cell.2020.08.031.Peer-Reviewed Original ResearchConceptsPhagocytic receptor MertkNetwork of macrophagesVentricular dysfunctionCardiac stressCardiac macrophagesDefective eliminationMetabolic alterationsOrgan functionImpaired autophagyHealthy myocardiumMyocardial tissueMurine heartMacrophagesMetabolic demandsCardiomyocytesMetabolic stabilityHeartAutophagy machineryMitochondrial homeostasisDysfunctional mitochondriaHomeostasisMembranous particlesDysfunctionInflammasomeMyocardium
2024
Recruited atypical Ly6G+ macrophages license alveolar regeneration after lung injury
Ruscitti C, Abinet J, Maréchal P, Meunier M, de Meeûs C, Vanneste D, Janssen P, Dourcy M, Thiry M, Bureau F, Schneider C, Machiels B, Hidalgo A, Ginhoux F, Dewals B, Guiot J, Schleich F, Garigliany M, Bellahcène A, Radermecker C, Marichal T. Recruited atypical Ly6G+ macrophages license alveolar regeneration after lung injury. Science Immunology 2024, 9: eado1227-eado1227. PMID: 39093958, PMCID: PMC7616420, DOI: 10.1126/sciimmunol.ado1227.Peer-Reviewed Original ResearchConceptsLung injuryAlveolar regenerationGranulocyte-macrophage colony-stimulating factorColony-stimulating factorType 2 epithelial cellsAlveolar type 2 epithelial cellsPopulation of macrophagesModels of injuryImmune cellsSuspected pneumoniaA virusAlveolar damageEpithelial regenerationInterleukin-4Lung damageMacrophage subsetsReceptor signalingLungPerilesional areaRepair responseMacrophagesTherapeutic targetInjuryCellsAirborne pathogensResident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia
Weinberger T, Denise M, Joppich M, Fischer M, Rodriguez C, Kumaraswami K, Wimmler V, Ablinger S, Räuber S, Fang J, Liu L, Liu H, Winterhalter J, Lichti J, Thomas L, Esfandyari D, Percin G, Matin S, Hidalgo A, Waskow C, Engelhardt S, Todica A, Zimmer R, Pridans C, Perdiguero E, Schulz C. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia. ELife 2024, 12: rp89377. PMID: 38775664, PMCID: PMC11111219, DOI: 10.7554/elife.89377.Peer-Reviewed Original ResearchConceptsInfarct sizeCardiac remodelingI/R injuryMacrophage populationsDeterioration of cardiac functionRecruitment of monocyte-derived macrophagesIschemia/reperfusion (I/R) injuryAntigen-presenting macrophagesImmune cell crosstalkSubsets of macrophagesIncreased infarct sizeMonocyte-derived macrophagesResponse to injuryInfluence infarct sizeContext of myocardial infarctionCSF1R inhibitionCardiac healingCardiac macrophagesCardiac functionCell crosstalkAdverse remodelingResident macrophagesTissue macrophagesMacrophage lineageMyocardial ischemia
2020
Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation
Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA, Weber C, Lizasoaín I, Torres A, Ruiz-Cabello J, Vázquez J, Hidalgo A. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nature Immunology 2020, 21: 135-144. PMID: 31932813, PMCID: PMC7223223, DOI: 10.1038/s41590-019-0571-2.Peer-Reviewed Original ResearchConceptsMagnitude of inflammationNeutrophil extracellular trapsNeutrophil proteomeGranule contentsInflammatory injuryRespiratory distressPneumonia patientsExtracellular trapsCell-intrinsic programsProgressive lossHuman neutrophilsNET formationProtein storesNeutrophilsInflammationLungAntimicrobial functionMouse mutantsCircadian cyclePatientsInjuryTime of dayArmamentariumIncidenceSeverity
2017
Phagocytosis imprints heterogeneity in tissue-resident macrophages
A-Gonzalez N, Quintana JA, García-Silva S, Mazariegos M, de la Aleja A, Nicolás-Ávila JA, Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, Rothlin CV, Peinado H, Castrillo A, Ricote M, Hidalgo A. Phagocytosis imprints heterogeneity in tissue-resident macrophages. Journal Of Experimental Medicine 2017, 214: 1281-1296. PMID: 28432199, PMCID: PMC5413334, DOI: 10.1084/jem.20161375.Peer-Reviewed Original Research
2014
Neutrophils scan for activated platelets to initiate inflammation
Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nácher M, Pitaval C, Radovanovic I, Fukui Y, McEver RP, Filippi MD, Lizasoain I, Ruiz-Cabello J, Zarbock A, Moro MA, Hidalgo A. Neutrophils scan for activated platelets to initiate inflammation. Science 2014, 346: 1234-1238. PMID: 25477463, PMCID: PMC4280847, DOI: 10.1126/science.1256478.Peer-Reviewed Original Research
2013
Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance
Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N, Kunisaki Y, Zhang D, van Rooijen N, Silberstein LE, Weber C, Nagasawa T, Frenette PS, Castrillo A, Hidalgo A. Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell 2013, 153: 1025-1035. PMID: 23706740, PMCID: PMC4128329, DOI: 10.1016/j.cell.2013.04.040.Peer-Reviewed Original ResearchConceptsBone marrowFunction of neutrophilsNeutrophil clearanceHomeostatic clearanceHematopoietic nicheNeutrophil eliminationHomeostatic signalsAged neutrophilsNeutrophilsRhythmic modulationMarrowCircadian eventsNuclear receptorsHematopoietic progenitorsClearanceInflammationLeukocytesMiceMacrophagesCirculationReceptors
2009
Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury
Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nature Medicine 2009, 15: 384-391. PMID: 19305412, PMCID: PMC2772164, DOI: 10.1038/nm.1939.Peer-Reviewed Original Research
2007
Complete Identification of E-Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL-1, ESL-1, and CD44
Hidalgo A, Peired AJ, Wild M, Vestweber D, Frenette PS. Complete Identification of E-Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL-1, ESL-1, and CD44. Immunity 2007, 26: 477-489. PMID: 17442598, PMCID: PMC4080624, DOI: 10.1016/j.immuni.2007.03.011.Peer-Reviewed Original ResearchImaging receptor microdomains on leukocyte subsets in live mice
Chiang EY, Hidalgo A, Chang J, Frenette PS. Imaging receptor microdomains on leukocyte subsets in live mice. Nature Methods 2007, 4: 219-222. PMID: 17322889, DOI: 10.1038/nmeth1018.Peer-Reviewed Original Research
2005
CD44 is a physiological E-selectin ligand on neutrophils
Katayama Y, Hidalgo A, Chang J, Peired A, Frenette PS. CD44 is a physiological E-selectin ligand on neutrophils. Journal Of Experimental Medicine 2005, 201: 1183-1189. PMID: 15824084, PMCID: PMC2213157, DOI: 10.1084/jem.20042014.Peer-Reviewed Original ResearchConceptsCell-specific posttranslational modificationsLeukocyte adhesion deficiency type IIPosttranslational modificationsPotential new targetsE-selectinInnate immune responseBroader roleEndothelial cell lineThioglycollate-induced peritonitisP-selectin glycoprotein ligand-1Cell linesNew targetsE-selectin ligandsAdhesion moleculesStaphylococcal enterotoxin ANeutrophil extravasationImmune responseSelectin familyCD44Bone marrowHuman PMNPMN bindInfectious sitesSelectin ligandsSkin pouch