2022
Cellular recovery after prolonged warm ischaemia of the whole body
Andrijevic D, Vrselja Z, Lysyy T, Zhang S, Skarica M, Spajic A, Dellal D, Thorn SL, Duckrow RB, Ma S, Duy PQ, Isiktas AU, Liang D, Li M, Kim SK, Daniele SG, Banu K, Perincheri S, Menon MC, Huttner A, Sheth KN, Gobeske KT, Tietjen GT, Zaveri HP, Latham SR, Sinusas AJ, Sestan N. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 2022, 608: 405-412. PMID: 35922506, PMCID: PMC9518831, DOI: 10.1038/s41586-022-05016-1.Peer-Reviewed Original ResearchConceptsSingle-nucleus transcriptomic analysesSpecific gene expression patternsCellular recoveryGene expression patternsCellular processesMammalian cellsTranscriptomic analysisLarge mammalsExpression patternsCellular repair processesCell deathComprehensive resourceUnderappreciated potentialPhysiological challengesTissue integrityRepair processSpecific changesPorcine brainMammalsOrgansMultiple organs
2007
Gene transfer via in vivo electroporation and in combination with electrophysiology – a novel and efficient high‐throughput assay to assess neuronal functionality
Huttner A, Kasten M, Anderson M. Gene transfer via in vivo electroporation and in combination with electrophysiology – a novel and efficient high‐throughput assay to assess neuronal functionality. The FASEB Journal 2007, 21: lb20-lb20. DOI: 10.1096/fasebj.21.6.lb20-a.Peer-Reviewed Original ResearchGene functionRecent large-scale screensCell type-specific expression patternsEmbryonic lethal phenotypeCell type-specific promotersMultitude of genesSpecific expression patternsLarge-scale screenHigh-throughput assaysCre/loxP technologyEmbryonic day 14.5Lethal phenotypeGenetic manipulationSpecific promotersMouse embryosExpression patternsSingle-cell patch-clamp recordingsIndividual cellsGene transferCNS developmentFluorescence microscopyDifferential interference contrastLoxP technologyTemporal controlCell morphology