2021
Discovery of highly reactive self-splicing group II introns within the mitochondrial genomes of human pathogenic fungi
Liu T, Pyle AM. Discovery of highly reactive self-splicing group II introns within the mitochondrial genomes of human pathogenic fungi. Nucleic Acids Research 2021, 49: 12422-12432. PMID: 34850132, PMCID: PMC8643640, DOI: 10.1093/nar/gkab1077.Peer-Reviewed Original ResearchConceptsGroup II intronsSelf-splicing group II intronsPathogenic fungiDrug targetsAntifungal drug targetsSelf-splicing intronsHuman pathogenic fungiMitochondrial genomeNear-physiological conditionsPromising drug targetProtein cofactorsStriking diversitySequence dataIntronsFungal pathogensInformatics searchBioinformatics workflowsFungiDimorphic fungusStructural signaturesPathogensGenomeCofactorDiversityTarget
2015
HOTAIR Forms an Intricate and Modular Secondary Structure
Somarowthu S, Legiewicz M, Chillón I, Marcia M, Liu F, Pyle AM. HOTAIR Forms an Intricate and Modular Secondary Structure. Molecular Cell 2015, 58: 353-361. PMID: 25866246, PMCID: PMC4406478, DOI: 10.1016/j.molcel.2015.03.006.Peer-Reviewed Original ResearchConceptsFunctional secondary structureFundamental cellular processesSecondary structureProtein-binding motifsProtein-binding domainsGroup II intronsMetastasis suppressor geneSecondary structure elementsCellular processesPhylogenetic analysisLncRNA moleculesEpidermal developmentChemical probingMolecular mechanismsSuppressor geneCancer progressionStructural organizationKey playersLncRNA HOTAIRHOTAIRStructure elementsRNAHomogenous formReceptor activatorIntrons
2005
Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II
Kawaoka J, Pyle AM. Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II. Nucleic Acids Research 2005, 33: 644-649. PMID: 15681616, PMCID: PMC548353, DOI: 10.1093/nar/gki208.Peer-Reviewed Original Research
2004
Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif
Sigel RK, Sashital DG, Abramovitz DL, Palmer AG, Butcher SE, Pyle AM. Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nature Structural & Molecular Biology 2004, 11: 187-192. PMID: 14745440, DOI: 10.1038/nsmb717.Peer-Reviewed Original ResearchConceptsGroup II intron ribozymeMetal ion titrationsSolution structureMetal ion bindingDivalent metal ionsMetal ion-binding sitesRibozyme active siteBackbone substituentsMetal ionsMajor groove faceIon-binding sitesIon titrationActive siteIon bindingSyn conformationIntron ribozymesMinor groove sideAGC triadNew RNA motifMajor grooveGroove faceStrong Mg2Catalytic triadGroove sideCentral core
2003
RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space
Duarte CM, Wadley LM, Pyle AM. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Research 2003, 31: 4755-4761. PMID: 12907716, PMCID: PMC169959, DOI: 10.1093/nar/gkg682.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsBase SequenceNucleic Acid ConformationRNARNA, MessengerRNA, RibosomalSoftwareConceptsRNA structureRepertoire of RNANovel RNA structuresNew RNA structuresStructural genomicsRNA functionRNA conformational spaceRibosomal subunitRNA researchRNA moleculesRNA motifsRNA structure comparisonMotif searchTertiary structureConformational changesStructure comparisonNew motifMotifReduced representationConformational spaceMacromolecular structureFuture adaptationGenomicsMajor regionsSubunitsDomains 2 and 3 Interact to Form Critical Elements of the Group II Intron Active Site
Fedorova O, Mitros T, Pyle AM. Domains 2 and 3 Interact to Form Critical Elements of the Group II Intron Active Site. Journal Of Molecular Biology 2003, 330: 197-209. PMID: 12823961, DOI: 10.1016/s0022-2836(03)00594-1.Peer-Reviewed Original ResearchA Group II Intron Inserted into a Bacterial Heat-Shock Operon Shows Autocatalytic Activity and Unusual Thermostability †
Adamidi C, Fedorova O, Pyle AM. A Group II Intron Inserted into a Bacterial Heat-Shock Operon Shows Autocatalytic Activity and Unusual Thermostability †. Biochemistry 2003, 42: 3409-3418. PMID: 12653544, DOI: 10.1021/bi027330b.Peer-Reviewed Original ResearchThe Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon
Aizawa Y, Xiang Q, Lambowitz AM, Pyle AM. The Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon. Molecular Cell 2003, 11: 795-805. PMID: 12667460, DOI: 10.1016/s1097-2765(03)00069-8.Peer-Reviewed Original ResearchConceptsGroup II intron RNPsIntron-encoded proteinTarget site specificityMobile genetic elementsIntron invasionDNA recognitionDNA bindingGenetic elementsConformational changesDuplex DNADNA targetsSite specificityDNAStrand DNAComplex cascadeReverse transcriptionRNPInvasionRetrotransposonsSplicingTranscriptionProteinKinetic frameworkPathwayCascadeLanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes.
Sigel RK, Pyle AM. Lanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes. 2003, 40: 477-512. PMID: 12723158.Peer-Reviewed Original Research
2002
The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding
Pang PS, Jankowsky E, Planet PJ, Pyle AM. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. The EMBO Journal 2002, 21: 1168-1176. PMID: 11867545, PMCID: PMC125889, DOI: 10.1093/emboj/21.5.1168.Peer-Reviewed Original ResearchConceptsRNA unwindingHelicase activityDNA helicase activityCytoplasmic RNA virusesProcessive DNA helicaseImportant drug targetsReplicative DNA intermediatesNS3 helicase activityViral NS3 proteinDNA helicaseDuplex unwindingPhylogenetic analysisReplicative roleProcessive helicaseDNA intermediatesHelicaseHost DNARNA virusesRNA activityRNA replicationDrug targetsNS3 proteinUnwindingCentral roleDNAProductive folding to the native state by a group II intron ribozyme11Edited by D. Draper
Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM. Productive folding to the native state by a group II intron ribozyme11Edited by D. Draper. Journal Of Molecular Biology 2002, 315: 297-310. PMID: 11786013, DOI: 10.1006/jmbi.2001.5233.Peer-Reviewed Original Research
1998
More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns.
Chu VT, Liu Q, Podar M, Perlman PS, Pyle AM. More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns. RNA 1998, 4: 1186-202. PMID: 9769094, PMCID: PMC1369692, DOI: 10.1017/s1355838298980724.Peer-Reviewed Original Research
1996
Role of metal ions in ribozymes.
Pyle AM. Role of metal ions in ribozymes. 1996, 32: 479-520. PMID: 8640529.Peer-Reviewed Original Research
1995
Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection.
Chin K, Pyle AM. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection. RNA 1995, 1: 391-406. PMID: 7493317, PMCID: PMC1482411.Peer-Reviewed Original ResearchConversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
Michels WJ, Pyle AM. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry 1995, 34: 2965-77. PMID: 7893710, DOI: 10.1021/bi00009a028.Peer-Reviewed Original Research
1994
Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
Pyle AM, Moran S, Strobel SA, Chapman T, Turner DH, Cech TR. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity. Biochemistry 1994, 33: 13856-63. PMID: 7947794, DOI: 10.1021/bi00250a040.Peer-Reviewed Original ResearchBuilding a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate.
Pyle AM, Green JB. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 1994, 33: 2716-25. PMID: 8117737, DOI: 10.1021/bi00175a047.Peer-Reviewed Original ResearchConceptsGeneral base catalysisChemical stepLinear rangeMichaelis-Menten mechanismSplice-site hydrolysisMultiple-turnover kinetic analysesPH/rate profileEnergetic stabilizationBase catalysisActive siteGel filtration chromatographyRibozyme kineticsReaction rateFiltration chromatographySpecific hydrolysisKinetic frameworkKinetic analysisHydrolysisReactionLower Km valuesBase pairingRibozyme activityKcat
1992
RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization.
Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. Journal Of Biological Chemistry 1992, 267: 17479-17482. PMID: 1381347, DOI: 10.1016/s0021-9258(19)37064-4.Peer-Reviewed Original Research
1990
Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena.
Pyle AM, McSwiggen JA, Cech TR. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 8187-8191. PMID: 2236030, PMCID: PMC54920, DOI: 10.1073/pnas.87.21.8187.Peer-Reviewed Original ResearchConceptsSingle base changeBase-pairing interactionsGuanosine-binding siteRNA substratesSubstrate bindingRNA cleavageOligonucleotide substratesEfficient RNA cleavageTertiary interactionsBase changesRibozyme variantsTetrahymena ribozymeWeak substrateMutant ribozymesRibozymePolyacrylamide gelsEquilibrium dissociation constantsDeoxyribose sugarCatalytic activityDivalent cationsEnergetic stabilizationMutagenesisDissociation constantsTetrahymenaLow Mg2