2014
The Linker Region of NS3 Plays a Critical Role in the Replication and Infectivity of Hepatitis C Virus
Kohlway A, Pirakitikulr N, Ding SC, Yang F, Luo D, Lindenbach BD, Pyle AM. The Linker Region of NS3 Plays a Critical Role in the Replication and Infectivity of Hepatitis C Virus. Journal Of Virology 2014, 88: 10970-10974. PMID: 24965468, PMCID: PMC4178846, DOI: 10.1128/jvi.00745-14.Peer-Reviewed Original Research
2013
Defining the functional determinants for RNA surveillance by RIG‐I
Kohlway A, Luo D, Rawling DC, Ding SC, Pyle AM. Defining the functional determinants for RNA surveillance by RIG‐I. EMBO Reports 2013, 14: 772-779. PMID: 23897087, PMCID: PMC3790051, DOI: 10.1038/embor.2013.108.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAmino Acid SequenceCatalytic DomainHEK293 CellsHumansMolecular Docking SimulationMolecular Sequence DataProtein BindingRNARNA HelicasesConceptsMelanoma differentiation-associated gene 5Robust ATPase activityDuplex RNA substrateMinimal functional unitATPase activityRetinoic acid-inducible geneInnate immune machineryAcid-inducible geneRNA surveillanceDifferentiation-associated gene 5RNA substratesIntracellular RNA sensorsDuplex RNARNA complexRNA targetsGene 5RNA virusesDistinct conformationsRNA sensorsDsRNA complexImmune machineryRNA duplexesInterferon responseFunctional determinantsFunctional units
2005
Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II
Kawaoka J, Pyle AM. Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II. Nucleic Acids Research 2005, 33: 644-649. PMID: 15681616, PMCID: PMC548353, DOI: 10.1093/nar/gki208.Peer-Reviewed Original Research
2004
Prediction of functional tertiary interactions and intermolecular interfaces from primary sequence data
Pang PS, Jankowsky E, Wadley LM, Pyle AM. Prediction of functional tertiary interactions and intermolecular interfaces from primary sequence data. Journal Of Experimental Zoology Part B Molecular And Developmental Evolution 2004, 304B: 50-63. PMID: 15595717, DOI: 10.1002/jez.b.21024.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsBiopolymersDatabases, ProteinModels, MolecularMolecular Sequence DataProtein Interaction MappingConceptsRNA-protein complexesPattern of conservationProtein-protein interactionsPrimary sequence dataRNA-proteinDifferent organismsSequence dataSequence informationIntermolecular interfaceEnergetic couplingTertiary interactionsMacromolecular interactionsRNAsGenesImportant intramolecular interactionsProteinSequenceIntramolecular interactionsRNAOrganismsSpeciesInteractionMutationsNumber of predictionsConservation
2003
Domains 2 and 3 Interact to Form Critical Elements of the Group II Intron Active Site
Fedorova O, Mitros T, Pyle AM. Domains 2 and 3 Interact to Form Critical Elements of the Group II Intron Active Site. Journal Of Molecular Biology 2003, 330: 197-209. PMID: 12823961, DOI: 10.1016/s0022-2836(03)00594-1.Peer-Reviewed Original ResearchA Group II Intron Inserted into a Bacterial Heat-Shock Operon Shows Autocatalytic Activity and Unusual Thermostability †
Adamidi C, Fedorova O, Pyle AM. A Group II Intron Inserted into a Bacterial Heat-Shock Operon Shows Autocatalytic Activity and Unusual Thermostability †. Biochemistry 2003, 42: 3409-3418. PMID: 12653544, DOI: 10.1021/bi027330b.Peer-Reviewed Original ResearchThe Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon
Aizawa Y, Xiang Q, Lambowitz AM, Pyle AM. The Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon. Molecular Cell 2003, 11: 795-805. PMID: 12667460, DOI: 10.1016/s1097-2765(03)00069-8.Peer-Reviewed Original ResearchConceptsGroup II intron RNPsIntron-encoded proteinTarget site specificityMobile genetic elementsIntron invasionDNA recognitionDNA bindingGenetic elementsConformational changesDuplex DNADNA targetsSite specificityDNAStrand DNAComplex cascadeReverse transcriptionRNPInvasionRetrotransposonsSplicingTranscriptionProteinKinetic frameworkPathwayCascadeLanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes.
Sigel RK, Pyle AM. Lanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes. 2003, 40: 477-512. PMID: 12723158.Peer-Reviewed Original Research
2002
The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding
Pang PS, Jankowsky E, Planet PJ, Pyle AM. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. The EMBO Journal 2002, 21: 1168-1176. PMID: 11867545, PMCID: PMC125889, DOI: 10.1093/emboj/21.5.1168.Peer-Reviewed Original ResearchConceptsRNA unwindingHelicase activityDNA helicase activityCytoplasmic RNA virusesProcessive DNA helicaseImportant drug targetsReplicative DNA intermediatesNS3 helicase activityViral NS3 proteinDNA helicaseDuplex unwindingPhylogenetic analysisReplicative roleProcessive helicaseDNA intermediatesHelicaseHost DNARNA virusesRNA activityRNA replicationDrug targetsNS3 proteinUnwindingCentral roleDNAmda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties
Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99: 637-642. PMID: 11805321, PMCID: PMC117358, DOI: 10.1073/pnas.022637199.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAmino Acid SequenceAnimalsApoptosisCell DifferentiationCell DivisionCloning, MolecularDEAD-box RNA HelicasesDNA, ComplementaryGrowth InhibitorsHumansInterferon Type IInterferon-Induced Helicase, IFIH1MelanomaMolecular Sequence DataRecombinant ProteinsRNA HelicasesRNA, Double-StrandedSequence Homology, Amino AcidTumor Cells, CulturedTumor Stem Cell AssayConceptsRNA-dependent ATPase activityCaspase recruitment domainHelicase motifsHuman melanoma cellsRecruitment domainRNA helicase motifsRNA-dependent ATPaseMDA-5RNA helicase domainPutative RNA helicaseMelanoma cellsEarly response genesATPase activityProtein kinase C activationGrowth-suppressive propertiesMelanoma differentiation-associated gene 5Appropriate pharmacological manipulationKinase C activationHypothetical proteinsRNA helicaseHelicase domainDifferentiation-associated gene 5Mediator of IFNSubtraction hybridizationMda-5 expressionProductive folding to the native state by a group II intron ribozyme11Edited by D. Draper
Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM. Productive folding to the native state by a group II intron ribozyme11Edited by D. Draper. Journal Of Molecular Biology 2002, 315: 297-310. PMID: 11786013, DOI: 10.1006/jmbi.2001.5233.Peer-Reviewed Original Research
1996
Role of metal ions in ribozymes.
Pyle AM. Role of metal ions in ribozymes. 1996, 32: 479-520. PMID: 8640529.Peer-Reviewed Original Research
1995
Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection.
Chin K, Pyle AM. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection. RNA 1995, 1: 391-406. PMID: 7493317, PMCID: PMC1482411.Peer-Reviewed Original ResearchConversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
Michels WJ, Pyle AM. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry 1995, 34: 2965-77. PMID: 7893710, DOI: 10.1021/bi00009a028.Peer-Reviewed Original Research
1994
Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
Pyle AM, Moran S, Strobel SA, Chapman T, Turner DH, Cech TR. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity. Biochemistry 1994, 33: 13856-63. PMID: 7947794, DOI: 10.1021/bi00250a040.Peer-Reviewed Original ResearchBuilding a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate.
Pyle AM, Green JB. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 1994, 33: 2716-25. PMID: 8117737, DOI: 10.1021/bi00175a047.Peer-Reviewed Original ResearchConceptsGeneral base catalysisChemical stepLinear rangeMichaelis-Menten mechanismSplice-site hydrolysisMultiple-turnover kinetic analysesPH/rate profileEnergetic stabilizationBase catalysisActive siteGel filtration chromatographyRibozyme kineticsReaction rateFiltration chromatographySpecific hydrolysisKinetic frameworkKinetic analysisHydrolysisReactionLower Km valuesBase pairingRibozyme activityKcat
1992
RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization.
Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. Journal Of Biological Chemistry 1992, 267: 17479-17482. PMID: 1381347, DOI: 10.1016/s0021-9258(19)37064-4.Peer-Reviewed Original Research
1990
Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena.
Pyle AM, McSwiggen JA, Cech TR. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 8187-8191. PMID: 2236030, PMCID: PMC54920, DOI: 10.1073/pnas.87.21.8187.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBinding, CompetitiveKineticsMagnesiumMolecular Sequence DataMutationOligonucleotide ProbesRNA, CatalyticTetrahymenaConceptsSingle base changeBase-pairing interactionsGuanosine-binding siteRNA substratesSubstrate bindingRNA cleavageOligonucleotide substratesEfficient RNA cleavageTertiary interactionsBase changesRibozyme variantsTetrahymena ribozymeWeak substrateMutant ribozymesRibozymePolyacrylamide gelsEquilibrium dissociation constantsDeoxyribose sugarCatalytic activityDivalent cationsEnergetic stabilizationMutagenesisDissociation constantsTetrahymenaLow Mg2