2003
The Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon
Aizawa Y, Xiang Q, Lambowitz AM, Pyle AM. The Pathway for DNA Recognition and RNA Integration by a Group II Intron Retrotransposon. Molecular Cell 2003, 11: 795-805. PMID: 12667460, DOI: 10.1016/s1097-2765(03)00069-8.Peer-Reviewed Original ResearchConceptsGroup II intron RNPsIntron-encoded proteinTarget site specificityMobile genetic elementsIntron invasionDNA recognitionDNA bindingGenetic elementsConformational changesDuplex DNADNA targetsSite specificityDNAStrand DNAComplex cascadeReverse transcriptionRNPInvasionRetrotransposonsSplicingTranscriptionProteinKinetic frameworkPathwayCascade
1995
Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
Michels WJ, Pyle AM. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry 1995, 34: 2965-77. PMID: 7893710, DOI: 10.1021/bi00009a028.Peer-Reviewed Original Research
1994
Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
Pyle AM, Moran S, Strobel SA, Chapman T, Turner DH, Cech TR. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity. Biochemistry 1994, 33: 13856-63. PMID: 7947794, DOI: 10.1021/bi00250a040.Peer-Reviewed Original Research