2017
The repeat region of cortactin is intrinsically disordered in solution
Li X, Tao Y, Murphy JW, Scherer AN, Lam TT, Marshall AG, Koleske AJ, Boggon TJ. The repeat region of cortactin is intrinsically disordered in solution. Scientific Reports 2017, 7: 16696. PMID: 29196701, PMCID: PMC5711941, DOI: 10.1038/s41598-017-16959-1.Peer-Reviewed Original ResearchConceptsCortactin repeatsRepeat regionActin filamentsHydrogen-deuterium exchange mass spectrometryAdjacent helical regionsMulti-domain proteinsExchange mass spectrometryExtensive biophysical analysisCircular dichroismHydrophobic core regionSmall-angle X-ray scatteringBiophysical analysisHelical regionCortactinRepeatsSimilar copiesUnfolded peptidesProteinMotifSize exclusion chromatographyMass spectrometryFilamentsExclusion chromatographyX-ray scatteringRegionNeurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity
Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Human Molecular Genetics 2017, 26: 4728-4740. PMID: 28973398, PMCID: PMC5886096, DOI: 10.1093/hmg/ddx355.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsDatabases, Nucleic AcidGuanine Nucleotide Exchange FactorsGuanosine DiphosphateGuanosine TriphosphateHEK293 CellsHumansMiceMice, KnockoutMutationNeurodevelopmental DisordersProtein DomainsProtein Serine-Threonine KinasesRac1 GTP-Binding ProteinRho GTP-Binding ProteinsRhoA GTP-Binding ProteinConceptsDe novo mutationsNeurodevelopmental disordersRare sequence variantsTriple functional domain proteinNovo mutationsComplex neurodevelopmental disorderBipolar disorderTherapeutic progressSequence variantsImpaired inhibitionProtein levelsDisordersMolecular pathwaysMillions of peopleIntellectual disabilityRare variantsNeurite outgrowthGenetic damageFactor activityMutationsExchange factor activityDistinct specificitiesPoor understandingRac1Activity
2015
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*. Journal Of Biological Chemistry 2015, 290: 8360-8372. PMID: 25694433, PMCID: PMC4375489, DOI: 10.1074/jbc.m115.638874.Peer-Reviewed Original ResearchConceptsIntegrin β1 cytoplasmic tailExtracellular matrix adhesion receptorsSrc homology domainFibroblast cell motilityIntegrin β1Β1 cytoplasmic tailMembrane-proximal segmentAdhesion complex formationMatrix adhesion receptorsNonreceptor tyrosine kinaseArg kinase activityArg nonreceptor tyrosine kinaseCancer cell invasivenessHomology domainActin cytoskeletonCytoplasmic tailCytoskeletal remodelingDendrite morphogenesisTyr-783Kinase domainPhosphorylated regionAbl familyΒ1 tailArg kinaseCell motility
2014
Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin
Engel U, Zhan Y, Long JB, Boyle SN, Ballif BA, Dorey K, Gygi SP, Koleske AJ, VanVactor D. Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin. Cytoskeleton 2014, 71: 195-209. PMID: 24520051, PMCID: PMC4054870, DOI: 10.1002/cm.21164.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAmino Acid SequenceAnimalsCell AdhesionChlorocebus aethiopsCOS CellsGrowth ConesHEK293 CellsHumansMicrotubule-Associated ProteinsMicrotubulesMolecular Sequence DataPhosphorylationPhosphotyrosinePlatelet-Derived Growth FactorProtein BindingProto-Oncogene Proteins c-ablSignal TransductionSubcellular FractionsSubstrate SpecificityXenopusConceptsAbelson non-receptor tyrosine kinasesNon-receptor tyrosine kinaseBona fide substrateF-actin structuresVertebrate cellsFide substrateProtein CLASPInteraction domainPDGF stimulationCLASP2Tyrosine residuesF-actinTyrosine kinaseNeural developmentAbl phosphorylationMicrotubulesPhosphorylationGrowth conesCytoskeletonABLFunctional relationshipDrosophilaMultiple stagesKinaseNeurulation
2012
A Peptide Photoaffinity Probe Specific for the Active Conformation of the Abl Tyrosine Kinase
Deng Y, Couch BA, Koleske AJ, Turk BE. A Peptide Photoaffinity Probe Specific for the Active Conformation of the Abl Tyrosine Kinase. ChemBioChem 2012, 13: 2510-2512. PMID: 23081945, PMCID: PMC3595066, DOI: 10.1002/cbic.201200560.Peer-Reviewed Original Research
2010
Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function
Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 16691-16696. PMID: 20823226, PMCID: PMC2944759, DOI: 10.1073/pnas.1006083107.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrainCell DeathCell LineDopamineGene Knockout TechniquesHumansIn Vitro TechniquesMiceMice, KnockoutMolecular Sequence DataMutationNeuronsParkinson DiseasePC12 CellsPhosphorylationProto-Oncogene Proteins c-ablRatsRecombinant Fusion ProteinsStress, PhysiologicalUbiquitinationUbiquitin-Protein LigasesConceptsParkinson's diseaseTreatment of PDSTI-571Postmortem PD brainsSporadic Parkinson's diseaseC-AblProtective functionNonreceptor tyrosine kinase c-AblMPTP intoxicationUbiquitin E3 ligase activityNeuroprotective approachesPD brainsSubstantia nigraDopaminergic neurotoxinProtective effectProtein type 2Subsequent neurotoxicityNervous systemType 2Parkin inactivationAutosomal recessive Parkinson's diseaseConditional knockoutKinase inhibitorsRecessive Parkinson's diseaseTyrosine kinase c-Abl
1995
Association of an activator with an RNA polymerase II holoenzyme.
Hengartner CJ, Thompson CM, Zhang J, Chao DM, Liao SM, Koleske AJ, Okamura S, Young RA. Association of an activator with an RNA polymerase II holoenzyme. Genes & Development 1995, 9: 897-910. PMID: 7774808, DOI: 10.1101/gad.9.8.897.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceGenes, FungalHerpes Simplex Virus Protein Vmw65Macromolecular SubstancesMediator ComplexModels, GeneticMolecular Sequence DataMutationPrecipitin TestsProtein BindingRestriction MappingRNA Polymerase IISaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Analysis, DNASuppression, GeneticTranscription FactorsTranscription, GeneticConceptsRNA polymerase II holoenzymeRNA polymerase IISRB proteinsPolymerase IIDomain of VP16General transcription factorsDirect interactionTranscription apparatusTranscriptional activatorMediators of activationTranscription initiationTranscription factorsImmunoprecipitation experimentsHoloenzymeGenesActivatorAffinity columnProteinSubcomplexPromoterVP16BindsInteractionHallmarkActivationA kinase–cyclin pair in the RNA polymerase II holoenzyme
Liao S, Zhang J, Jeffery D, Koleske A, Thompson C, Chao D, Viljoen M, van Vuuren H, Young R. A kinase–cyclin pair in the RNA polymerase II holoenzyme. Nature 1995, 374: 193-196. PMID: 7877695, DOI: 10.1038/374193a0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCyclin-Dependent Kinase 8Cyclin-Dependent KinasesCyclinsFungal ProteinsMolecular Sequence DataMutationProtein Serine-Threonine KinasesRNA Polymerase IISaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidTranscription FactorsTranscription, GeneticConceptsRNA polymerase II holoenzymeSRB proteinsKinase functionRNA polymerase II carboxy-terminal domainCyclin-like proteinGeneral transcription factorsRNA polymerase IISuppressors of mutationsNormal transcriptional responseCarboxy-terminal domainPolymerase IITranscriptional regulatorsTranscriptional responseGalactose inductionTranscription factorsRegulatory proteinsTranscription systemHoloenzymeRegulatory roleKinaseProteinBiochemical evidenceGenesVivoSrb11
1993
A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast
Thompson C, Koleske A, Chao D, Young R. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73: 1361-1375. PMID: 8324825, DOI: 10.1016/0092-8674(93)90362-t.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBinding SitesDNA Mutational AnalysisDNA-Binding ProteinsFungal ProteinsGene Expression RegulationMediator ComplexMolecular Sequence DataMultienzyme ComplexesRecombinant ProteinsRNA Polymerase IISaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTATA-Box Binding ProteinTranscription FactorsTranscription, GeneticConceptsTATA-binding proteinRNA polymerase II carboxy-terminal domainCarboxy-terminal domainMultisubunit complexLarge multisubunit complexFunctional preinitiation complexRNA polymerase IIEfficient transcription initiationTranscription initiation complexSRB proteinsCTD proteinsExtragenic suppressorsCTD functionPolymerase IIPreinitiation complexTranscription initiationInitiation complexComplex bindsTruncation mutationsSRB2Srb5ProteinBiochemical evidenceComplexesSRB4
1992
A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID
Koleske A, Buratowski S, Nonet M, Young R. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 1992, 69: 883-894. PMID: 1591782, DOI: 10.1016/0092-8674(92)90298-q.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBlotting, WesternChromatography, AffinityFungal ProteinsGenes, SuppressorMediator ComplexMolecular Sequence DataMutationRecombinant Fusion ProteinsRNA Polymerase IISaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription Factor TFIIDTranscription FactorsTranscription, GeneticConceptsCarboxy-terminal domainRNA polymerase II carboxy-terminal domainNovel transcription factorTranscription initiation complexInitiation complexTranscription factorsFunctional linkConditional growth phenotypesTranscription initiation apparatusRNA polymerase IITATA-binding factorDominant suppressorsPolymerase IIGrowth phenotypeTranscription initiationGene expressionAllele specificitySRB2Truncation mutationsSame functionSimilar defectsTFIIDSuppressorEfficient establishmentMechanism of action
1989
Phenobarbital-inducible Aldehyde Dehydrogenase in the Rat cDNA sequence and regulation of the mRNA by phenobarbital in responsive rats
Dunn TJ, Koleske AJ, Lindahl R, Pitot HC. Phenobarbital-inducible Aldehyde Dehydrogenase in the Rat cDNA sequence and regulation of the mRNA by phenobarbital in responsive rats. Journal Of Biological Chemistry 1989, 264: 13057-13065. PMID: 2753900, DOI: 10.1016/s0021-9258(18)51595-7.Peer-Reviewed Original ResearchConceptsComplete nucleotide sequenceSpecific gene expressionAldehyde dehydrogenaseAmino acid sequenceGlutathione S-transferase YaRat cDNA sequenceStrong conservationCDNA sequenceNucleotide sequenceMRNA speciesAcid sequenceGene expressionCytosolic isozymeMolecular massAmino acidsCytochrome P-450eMultiple pathwaysMRNAResponsive allelesMRNA levelsSequenceRegulationCytochrome P-450bDehydrogenaseP-450e