2003
Reversibility of severe metabolic stress in stored platelets after in vitro plasma rescue or in vivo transfusion: restoration of secretory function and maintenance of platelet survival
Rinder HM, Snyder EL, Tracey JB, Dincecco D, Wang C, Baril L, Rinder CS, Smith BR. Reversibility of severe metabolic stress in stored platelets after in vitro plasma rescue or in vivo transfusion: restoration of secretory function and maintenance of platelet survival. Transfusion 2003, 43: 1230-1237. PMID: 12919425, DOI: 10.1046/j.1537-2995.2003.00484.x.Peer-Reviewed Original ResearchConceptsGlycoprotein IIb/IIIaAlpha-granule releaseAdverse metabolic conditionsIIb/IIIaPlatelet recoveryPlatelet concentratesMetabolic conditionsVivo platelet recoveryPlatelet secretory responseSevere metabolic stressOsmotic recoveryAgonist-induced bindingAutologous transfusionTransient derangementSecretory responseFunctional derangementFunctional abnormalitiesMembrane phosphatidylserine exposureMetabolic rescueNormal volunteersPlatelet survivalPosttransfusion recoveryPlatelet aggregationImproved functionSecretory function
1998
Differences in Platelet α-granule Release between Normals and Immune Thrombocytopenic Patients and between Young and Old Platelets
Rinder HM, Tracey JB, Recht M, DeCastro L, Rinder CS, McHugh C, Smith BR. Differences in Platelet α-granule Release between Normals and Immune Thrombocytopenic Patients and between Young and Old Platelets. Thrombosis And Haemostasis 1998, 80: 457-462. PMID: 9759627, DOI: 10.1055/s-0037-1615229.Peer-Reviewed Original ResearchConceptsImmune thrombocytopenic purpuraThrombin receptor agonist peptideAlpha-granule releaseITP patientsOld plateletsThrombocytopenic patientsImmune thrombocytopenic patientsPlatelet α-granule releaseΑ-granule releaseNormal human controlsMaintenance of hemostasisControl RPSerious bleedingThrombocytopenic purpuraMegakaryocytic hypoplasiaPatient groupReticulated plateletsNormal controlsPatientsPlatelet responseAgonist peptideYoung plateletsPlateletsHemostatic activityCD62P
1995
Nitroprusside Inhibition of Platelet Function Is Transient and Reversible by Catecholamine Priming
Harris S, Rinder C, Rinder H, Tracey J, Smith B, Hines R. Nitroprusside Inhibition of Platelet Function Is Transient and Reversible by Catecholamine Priming. Anesthesiology 1995, 83: 1145-1152.. PMID: 8533905, DOI: 10.1097/00000542-199512000-00003.Peer-Reviewed Original ResearchConceptsAlpha-granule releaseSodium nitroprusside infusionSodium nitroprussidePlatelet functionNitroprusside infusionPlatelet aggregationSodium nitroprusside administrationP-selectin expressionPlatelet-rich plasmaMeasures of plateletIntravenous crystalloidImpaired coagulationNitroprusside administrationAntiplatelet effectEpinephrine pretreatmentNormal volunteersVivo findingsHuman volunteersNitroprussideVivo inhibitionVitro inhibitionInhibitory effectSignificant inhibitionRapid reversibilityTime course
1994
Platelet alpha-granule release in cocaine users.
Rinder HM, Ault KA, Jatlow PI, Kosten TR, Smith BR. Platelet alpha-granule release in cocaine users. Circulation 1994, 90: 1162-1167. PMID: 7522132, DOI: 10.1161/01.cir.90.3.1162.Peer-Reviewed Original ResearchConceptsAlpha-granule releasePlatelet alpha-granule releaseCocaine useCocaine usersBaseline levelsHigher mean baseline levelsLong-term cocaine usePeak plasma cocaine levelsPlatelet P-selectin expressionMean baseline levelPlasma cocaine levelsP-selectin expressionPlatelet-rich thrombiPlacebo infusionFlow cytometric methodArterial occlusionBlinded infusionHigh basal levelsAcute increaseAtherosclerotic lesionsPlatelet activationCocaine levelsMean percentPlatelet agonistsBasal levels
1993
Aspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin Does Not Inhibit Adenosine Diphosphate-Induced Platelet α-Granule Release. Blood 1993, 82: 505-512. PMID: 7687162, DOI: 10.1182/blood.v82.2.505.505.Peer-Reviewed Original ResearchConceptsP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet α-granule releasePlatelet dense granule secretionAlpha-granule releaseΑ-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlateletsAspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release
Rinder C, Student L, Bonan J, Rinder H, Smith B. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha- granule release. Blood 1993, 82: 505-512. DOI: 10.1182/blood.v82.2.505.bloodjournal822505.Peer-Reviewed Original ResearchP-selectin expressionAlpha-granule secretionPlatelet alpha-granule secretionAspirin treatmentP-selectinGranule secretionPlatelet alpha-granule releaseArachidonic acidCyclooxygenase-dependent metabolitesPlatelet surface expressionPlatelet dense granule secretionAlpha-granule releaseDense granule secretionPolymorphonuclear lymphocytesAmiloride treatmentLipoxygenase inhibitorsAspirinSecretionWhole bloodPlatelet-platelet interactionsTreatmentInvolvement of metabolitesPlateletsExpressionADP
1992
Cardiopulmonary bypass induces leukocyte-platelet adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992, 79: 1201-1205. DOI: 10.1182/blood.v79.5.1201.bloodjournal7951201.Peer-Reviewed Original ResearchLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugatesCardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion
Rinder C, Bonan J, Rinder H, Mathew J, Hines R, Smith B. Cardiopulmonary Bypass Induces Leukocyte-Platelet Adhesion. Blood 1992, 79: 1201-1205. PMID: 1371416, DOI: 10.1182/blood.v79.5.1201.1201.Peer-Reviewed Original ResearchConceptsLeukocyte-platelet conjugatesCardiopulmonary bypassMonocyte-platelet conjugatesEnd of CPBStart of CPBActivation of monocytesAlpha-granule releaseGMP-140 expressionGranule membrane protein-140Time courseLeukocyte-platelet adhesionCD11b expressionMonocyte activationSurface CD11bWhole bloodGMP-140Surface expressionProtein 140Increased numberCD11bBypassMonocytesPlateletsPlatelet adhesionConjugates
1991
Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass
Rinder C, Mathew J, Rinder H, Bonan J, Ault K, Smith B. Modulation of Platelet Surface Adhesion Receptors during Cardiopulmonary Bypass. Anesthesiology 1991, 75: 563-570. PMID: 1718190, DOI: 10.1097/00000542-199110000-00004.Peer-Reviewed Original ResearchConceptsIIb/IIIaCardiopulmonary bypassGlycoprotein IIb/IIIaPlatelet activationQualitative platelet defectsGlycoprotein IVGlycoprotein IbAlpha-granule releaseGranule membrane protein-140Surface glycoprotein IbHLA APlatelet functionBaseline valuesVon Willebrand factor receptorBypassThrombospondin receptorGlycoprotein Ib expressionFlow cytometryIb expressionPlatelet defectsSelective decreasePlatelet receptorsFactor receptorReceptorsProtein 140