2021
MMAB promotes negative feedback control of cholesterol homeostasis
Goedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA, Suárez Y, Fernández-Hernando C. MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications 2021, 12: 6448. PMID: 34750386, PMCID: PMC8575900, DOI: 10.1038/s41467-021-26787-7.Peer-Reviewed Original ResearchMeSH KeywordsAlkyl and Aryl TransferasesAnimalsCell Line, TumorCholesterolCholesterol, LDLFeedback, PhysiologicalGene Expression ProfilingHeLa CellsHep G2 CellsHomeostasisHumansHydroxymethylglutaryl CoA ReductasesLiverMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticReceptors, LDLRNA InterferenceSterol Regulatory Element Binding Protein 2ConceptsCholesterol biosynthesisCholesterol homeostasisMouse hepatic cell lineIntegrative genomic strategyIntricate regulatory networkMaster transcriptional regulatorCellular cholesterol levelsHMGCR activityLDL-cholesterol uptakeCholesterol levelsHuman hepatic cellsSterol contentGenomic strategiesTranscriptional regulatorsRegulatory networksIntracellular cholesterol levelsGene expressionUnexpected roleHepatic cell linesBiosynthesisMMABIntracellular levelsCell linesHomeostasisExpression of SREBP2Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice
Singh AK, Chaube B, Zhang X, Sun J, Citrin KM, Canfrán-Duque A, Aryal B, Rotllan N, Varela L, Lee RG, Horvath TL, Price N, Suárez Y, Fernandez-Hernando C. Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. Journal Of Clinical Investigation 2021, 131 PMID: 34255741, PMCID: PMC8409581, DOI: 10.1172/jci140989.Peer-Reviewed Original ResearchDiet-induced obesityGlucose intoleranceHigh-fat fed conditionsLipoprotein lipaseExcess hepatic lipid accumulationSystemic metabolic dysfunctionRole of ANGPTL4Liver lipid metabolismHepatic lipid accumulationTargeted pharmacologic therapyANGPTL4 gene expressionMetabolic turnover studiesHepatic lipase activityObesity-associated diabetesFatty acidsNovel inhibition strategiesPharmacologic therapyLiver steatosisLiver damageLipoprotein remnantsCholesterol levelsMetabolic dysfunctionHepatic uptakeANGPTL4 deficiencyHL activity
2017
Noncoding RNAs in Cholesterol Metabolism and Atherosclerosis
Price N, Fernández-Hernando C. Noncoding RNAs in Cholesterol Metabolism and Atherosclerosis. Cardiac And Vascular Biology 2017, 2: 21-37. DOI: 10.1007/978-3-319-52945-5_2.Peer-Reviewed Original ResearchLow-density lipoprotein cholesterolPlasma LDL-C levelsDysregulation of cholesterolLDL-C levelsPrimary risk factorTreatment of atherosclerosisLipoprotein cholesterolCardiometabolic diseasesCholesterol levelsRisk factorsEffective therapyCholesterol metabolismAtherosclerosisHuman morbidityProper metabolic functionProminent causeElevated levelsLipid homeostasisGenetic factorsDiseaseCholesterolMetabolic functionsMorbidityLevelsPosttranscriptional level
2010
microRNAs, Plasma Lipids, and Cardiovascular Disease
Dávalos A, Fernández-Hernando C. microRNAs, Plasma Lipids, and Cardiovascular Disease. Current Cardiovascular Risk Reports 2010, 5: 10-17. DOI: 10.1007/s12170-010-0145-1.Peer-Reviewed Original ResearchCardiovascular diseaseShort non-coding RNAsPost-transcriptional repressionHigh-density lipoprotein biogenesisMiR-33Non-coding RNAsTotal cholesterol levelsCassette transporter A1Expression of ATPMiR-122 expressionAberrant regulationGene expressionLipoprotein biogenesisDyslipidemic patientsLipid homeostasisMetabolic syndromePlasma lipidsCholesterol levelsLeading causeLipoprotein metabolismABCG1 transportersCholesterol effluxCholesterol metabolismPathologic processesMultifactorial disorder