2024
Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis
Joshi D, Coon B, Chakraborty R, Deng H, Yang Z, Babar M, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor J, Orr A, Fernandez-Hernando C, Libreros S, Schwartz M. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nature Cardiovascular Research 2024, 3: 1035-1048. PMID: 39232138, PMCID: PMC11399086, DOI: 10.1038/s44161-024-00522-z.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCadherin Related ProteinsCadherinsDisease Models, AnimalEndothelial CellsHuman Umbilical Vein Endothelial CellsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMiceMice, Inbred C57BLMice, KnockoutPlaque, AtheroscleroticReceptors, NotchSignal TransductionConceptsAtherosclerotic cardiovascular diseaseIntracellular domainNotch intracellular domainTranscription factor KLF2Mechanisms of vascular inflammationAnti-inflammatory programVascular endothelial cellsHost defenseCleavage resultsAntibody blockadeGenetic deletionVascular inflammationViral infectionImmune systemEndothelial cellsCardiovascular diseasePromote atherosclerosisBlood flowKLF2KLF4Suppressive signalsEndotheliumMechanistic studiesFatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring
Sun J, Esplugues E, Bort A, Cardelo M, Ruz-Maldonado I, Fernández-Tussy P, Wong C, Wang H, Ojima I, Kaczocha M, Perry R, Suárez Y, Fernández-Hernando C. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nature Metabolism 2024, 6: 741-763. PMID: 38664583, DOI: 10.1038/s42255-024-01019-6.Peer-Reviewed Original ResearchConceptsFatty acid binding protein 5Tumor-associated macrophagesHepatocellular carcinomaImmunosuppressive phenotype of tumor-associated macrophagesIncreased CD8+ T cell activationCD8+ T cell activationPhenotype of tumor-associated macrophagesPro-inflammatory tumor microenvironmentCo-stimulatory molecules CD80T cell activationHepatocellular carcinoma burdenTransformation of hepatocytesBinding protein 5Potential therapeutic approachImmunosuppressive phenotypeTumor microenvironmentFerroptosis-induced cell deathMale miceEnhanced ferroptosisTherapeutic approachesPharmacological inhibitionGenetic ablationIncreased expressionSingle-cell atlasAnalysis of transformed cells
2023
MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention
Qiu B, Lawan A, Xirouchaki C, Yi J, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett A. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nature Communications 2023, 14: 5405. PMID: 37669951, PMCID: PMC10480499, DOI: 10.1038/s41467-023-41145-5.Peer-Reviewed Original Research
2021
Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis
Zhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, Li Q, Tellides G, Ordovás-Montanes J, García Milian R, Dixit VD, Ikonen E, Suárez Y, Fernández-Hernando C. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2107682118. PMID: 34782454, PMCID: PMC8617522, DOI: 10.1073/pnas.2107682118.Peer-Reviewed Original ResearchConceptsCholesterol biosynthetic intermediatesBiosynthetic intermediatesDependent inflammasome activationSingle-cell transcriptomicsMitochondrial reactive oxygen species productionFoam cell formationMacrophage foam cellsReactive oxygen species productionHuman coronary artery lesionsConversion of desmosterolTranscriptomic analysisMacrophage cholesterol metabolismPhysiological contextOxygen species productionLiver X receptor ligandsApoptosis-associated speck-like proteinRetinoid X receptor activationX receptor ligandsInflammasome activationAtherosclerotic plaquesSpeck-like proteinCholesterol homeostasisMacrophage inflammasome activationKey moleculesCell formationPCSK9 Activity Is Potentiated Through HDL Binding
Burnap SA, Sattler K, Pechlaner R, Duregotti E, Lu R, Theofilatos K, Takov K, Heusch G, Tsimikas S, Fernández-Hernando C, Berry SE, Hall WL, Notdurfter M, Rungger G, Paulweber B, Willeit J, Kiechl S, Levkau B, Mayr M. PCSK9 Activity Is Potentiated Through HDL Binding. Circulation Research 2021, 129: 1039-1053. PMID: 34601896, PMCID: PMC8579991, DOI: 10.1161/circresaha.121.319272.Peer-Reviewed Original ResearchConceptsProprotein convertase subtilisin/kexin type 9High-density lipoproteinSmall high-density lipoproteinHDL proteomeApolipoprotein C3Low-density lipoprotein receptor degradationPlasma proprotein convertase subtilisin/kexin type 9Convertase subtilisin/kexin type 9Subtilisin/kexin type 9Coronary artery diseaseLow-density lipoprotein uptakeArtery diseasePostprandial lipaemiaBruneck StudyPCSK9 levelsPostprandial responseTriglyceride levelsPlasma levelsApolipoprotein profilesSAPHIR studyIndependent cohortPhospholipid transfer proteinMagnetic resonancePCSK9 activityType 9Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus
Srivastava SP, Zhou H, Setia O, Dardik A, Fernandez‐Hernando C, Goodwin J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. Journal Of The American Heart Association 2021, 10: e019437. PMID: 34308664, PMCID: PMC8475689, DOI: 10.1161/jaha.120.019437.Peer-Reviewed Original ResearchConceptsDiabetic nephropathySegmental fibrosisFatty acid metabolismDiabetes mellitusEndothelial cellsPrimary podocytesReceptor knockout micePathogenesis of proteinuriaAdministration of streptozotocinProfibrotic gene expressionAcid metabolismGlomerular endothelial cellsSmooth muscle actinEndothelial cell homeostasisCarnitine palmitoyltransferase 1AFatty acid oxidationBackground ProteinuriaWorsened fibrosisClinical characteristicsFibrotic featuresGlomerular fibrosisGlomerular homeostasisPatient managementControl littermatesSevere diseaseKetogenic diet restrains aging-induced exacerbation of coronavirus infection in mice
Ryu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife 2021, 10: e66522. PMID: 34151773, PMCID: PMC8245129, DOI: 10.7554/elife.66522.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietCoronavirus infectionAged miceT cellsHigher systemic inflammationInfected aged miceCOVID-19 severityCOVID-19 infectionActivation of ketogenesisMouse hepatitis virus strain A59Systemic inflammationInflammatory damageInfluenza infectionClinical hallmarkNLRP3 inflammasomeImmune surveillanceAdipose tissuePotential treatmentInfectionMiceStrongest predictorLungMortalityAge
2019
Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation
Ramírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 2019, 140: 225-239. PMID: 31154825, PMCID: PMC6778687, DOI: 10.1161/circulationaha.118.038571.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseDiet-induced atherosclerosisNO productionVascular inflammationENOS activationEndothelial nitric oxide synthase activationNitric oxide synthase activationAthero-protective functionsLipid metabolic factorsEndothelial cell inflammationNitric oxide synthaseWild-type miceMice Lacking ExpressionProduction of NOExtracellular matrix remodelingInflammatory primingHyperlipidemic miceInflammatory pathwaysAortic archCell inflammationOxide synthaseMetabolic factorsMouse modelAtherosclerosisInflammation
2018
Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis
Aryal B, Singh AK, Zhang X, Varela L, Rotllan N, Goedeke L, Chaube B, Camporez JP, Vatner DF, Horvath TL, Shulman GI, Suárez Y, Fernández-Hernando C. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018, 3: e97918. PMID: 29563332, PMCID: PMC5926923, DOI: 10.1172/jci.insight.97918.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAllelesAngiopoietin-Like Protein 4AnimalsAtherosclerosisBody WeightChemokinesCytokinesDiet, High-FatDiet, WesternFatty AcidsGene Expression ProfilingGene Expression RegulationGene Knockout TechniquesGlucoseInsulinIntegrasesIntercellular Signaling Peptides and ProteinsLipid MetabolismLipoprotein LipaseLipoproteinsLiverMaleMiceMice, Inbred C57BLMice, KnockoutMusclesObesityProprotein Convertase 9TriglyceridesConceptsAngiopoietin-like protein 4High-fat dietEctopic lipid depositionLipid depositionGlucose toleranceLipoprotein lipaseShort-term high-fat dietSevere metabolic abnormalitiesProgression of atherosclerosisMajor risk factorTriacylglycerol-rich lipoproteinsFatty acid uptakeAdipose tissue resultsProatherogenic lipoproteinsCardiometabolic diseasesMetabolic abnormalitiesKO miceRisk factorsWhole body lipidMetabolic disordersGlucose metabolismLPL activityAdipose tissueGenetic ablationRapid clearance
2017
Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis
Price NL, Rotllan N, Canfrán-Duque A, Zhang X, Pati P, Arias N, Moen J, Mayr M, Ford DA, Baldán Á, Suárez Y, Fernández-Hernando C. Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Reports 2017, 21: 1317-1330. PMID: 29091769, PMCID: PMC5687841, DOI: 10.1016/j.celrep.2017.10.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAtherosclerosisATP Binding Cassette Transporter 1Blood GlucoseCells, CulturedCholesterolCholesterol, HDLDisease ProgressionGene Regulatory NetworksMacrophages, PeritonealMaleMiceMice, Inbred C57BLMice, KnockoutMicroRNAsMitochondrial Trifunctional Protein, beta SubunitMyocardiumReceptors, LDLConceptsPlaque burdenMiR-33MiR-33-deficient miceReduced plaque burdenProgression of atherosclerosisPro-atherogenic effectsMacrophage cholesterol effluxDecreases lipid accumulationTreatment of atherosclerosisMacrophage-specific lossMiR-33 deficiencyPromotes obesityHDL levelsInsulin resistancePlaque macrophagesProtective effectHyperlipidemic conditionsCholesterol effluxPlaque developmentLipid metabolismAtherosclerosisLipid accumulationHDL biogenesisPromising targetMacrophagesMacrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis
Canfrán‐Duque A, Rotllan N, Zhang X, Fernández‐Fuertes M, Ramírez‐Hidalgo C, Araldi E, Daimiel L, Busto R, Fernández‐Hernando C, Suárez Y. Macrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine 2017, 9: 1244-1262. PMID: 28674080, PMCID: PMC5582411, DOI: 10.15252/emmm.201607492.Peer-Reviewed Original ResearchConceptsER stress-induced apoptosisPost-translational degradationFoam cell formationMiR-21MiR-21 target genesTarget genesJNK signalingPlaque necrosisAbundant miRNAVascular inflammationAccumulation of lipidsHematopoietic cellsMacrophage apoptosisCell formationAberrant expressionMacrophage deficiencyApoptosisCholesterol effluxProgression of atherosclerosisChronic inflammatory diseasePathophysiological processesInflammatory cellsExpressionInflammatory diseasesCardiovascular disease
2016
ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression
Aryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications 2016, 7: 12313. PMID: 27460411, PMCID: PMC4974469, DOI: 10.1038/ncomms12313.Peer-Reviewed Original ResearchMeSH KeywordsAngiopoietin-Like Protein 4AnimalsApoptosisAtherosclerosisBone Marrow TransplantationCell ProliferationCell SurvivalDisease ProgressionFoam CellsHematopoietic Stem CellsHumansInflammationLeukocytosisMacrophagesMaleMiceMice, Inbred C57BLModels, BiologicalMonocytesMyeloid Progenitor CellsPlaque, AtheroscleroticConceptsFoam cell formationMyeloid progenitor cell expansionANGPTL4 deficiencyCell formationMacrophage gene expressionLipid raft contentMyeloid progenitor populationsProgenitor cell expansionUpregulated genesProgenitor populationsGene expressionHaematopoietic cellsCell surfaceMacrophage apoptosisCell expansionCells resultsProtein 4Lipid accumulationCD36 expressionLike protein 4ExpressionProfound effectMacrophagesGenesLarger atherosclerotic plaquesAge‐associated vascular inflammation promotes monocytosis during atherogenesis
Du W, Wong C, Song Y, Shen H, Mori D, Rotllan N, Price N, Dobrian AD, Meng H, Kleinstein SH, Fernandez‐Hernando C, Goldstein DR. Age‐associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell 2016, 15: 766-777. PMID: 27135421, PMCID: PMC4933655, DOI: 10.1111/acel.12488.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAortaAtherosclerosisBlood VesselsCell CountChemotaxisCulture Media, ConditionedDiet, High-FatDown-RegulationHematopoiesisHemodynamicsInflammationInflammation MediatorsInsulin ResistanceInterleukin-6LeukocytosisMacrophagesMaleMiceMice, Inbred C57BLMonocytesOligonucleotide Array Sequence AnalysisReceptors, LDLStromal CellsUp-RegulationConceptsHigh-fat dietVascular inflammationMacrophage accumulationAtherosclerotic aortaBone marrow transplant experimentsStromal factorsElevated blood pressureVascular smooth muscle cellsLow-fat dietSmooth muscle cellsBlood pressurePeripheral monocytosisProinflammatory stateInflammatory stateLDL levelsIL-6Insulin resistancePeripheral bloodEnhanced atherogenesisInflammatory responseMetabolic dysfunctionYoung aortasMurine modelProduction of osteopontinCCL-2
2014
Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis
Rodlan N, Chamorro‐Jorganes A, Araldi E, Wanschel AC, Aryal B, Aranda JF, Goedeke L, Salerno AG, Ramírez CM, Sessa WC, Suárez Y, Fernández‐Hernando C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. The FASEB Journal 2014, 29: 597-610. PMID: 25392271, PMCID: PMC4314230, DOI: 10.1096/fj.14-262097.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisBlood GlucoseBone Marrow CellsBone Marrow TransplantationCell MovementCholesterolCytokinesDisease ProgressionInflammationInsulinLeukocytesLipidsLipoproteins, LDLMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalMicroscopy, FluorescencePlaque, AtheroscleroticProto-Oncogene Proteins c-aktReceptors, LDLConceptsProgression of atherosclerosisSerine-threonine protein kinaseBone marrow cellsAkt2-deficient miceInsulin-responsive tissuesWild-type bone marrow cellsProtein kinaseMarrow cellsAkt2 deficiencyAkt2Higher plasma lipidsWild-type miceMice resultsProatherogenic cytokinesObese subjectsPlasma lipidsProinflammatory cytokinesInsulin resistanceInflammatory responseGlucose levelsAtherosclerotic plaquesCholesterol metabolismAtherosclerosisMacrophage migrationMarked reduction
2007
Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease
Fernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ, Sessa WC. Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism 2007, 6: 446-457. PMID: 18054314, PMCID: PMC3621848, DOI: 10.1016/j.cmet.2007.10.007.Peer-Reviewed Original ResearchMeSH KeywordsAcute Coronary SyndromeAnimalsApolipoproteins EApoptosisAtherosclerosisBone Marrow TransplantationCoronary OcclusionDisease Models, AnimalEndothelial CellsFemaleHumansInflammation MediatorsMacrophagesMaleMiceMice, KnockoutNitric Oxide Synthase Type IINitric Oxide Synthase Type IIIProto-Oncogene Proteins c-aktConceptsLoss of Akt1Apolipoprotein E knockout backgroundOcclusive coronary artery diseaseBone marrow transfer experimentsAcute coronary syndromeCoronary artery diseaseLesion expansionCoronary syndromeCoronary atherosclerosisSevere atherosclerosisArtery diseaseInflammatory mediatorsCoronary lesionsVascular protectionVascular originProinflammatory genesENOS phosphorylationCardiovascular systemLesion formationGenetic ablationEndothelial cellsAtherogenesisEnhanced expressionKnockout backgroundVessel wall