2023
A novel immune checkpoint score system for prognostic evaluation in pancreatic adenocarcinoma
Chen Y, Lin X, Zou X, Qian Y, Liu Y, Wang R, Wang X, Yu X, Liu C, Cheng H. A novel immune checkpoint score system for prognostic evaluation in pancreatic adenocarcinoma. BMC Gastroenterology 2023, 23: 113. PMID: 37024802, PMCID: PMC10080823, DOI: 10.1186/s12876-023-02748-w.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaCD8-Positive T-LymphocytesEndothelial CellsGene Expression Regulation, NeoplasticHumansPancreatic NeoplasmsPrognosisTumor MicroenvironmentConceptsTumor-infiltrating immune cellsExpression of OX40Risk score modelImmune cellsIdentified OX40Immune checkpointsOverall survivalScoring systemRisk scoreClinical specimensExpression of immune checkpoint genesCD8+ T cellsImmune checkpoint gene expressionSomatic mutationsProtein expressionHigh-risk score groupImmunogenic cell deathCheckpoint gene expressionImmune checkpoint expressionImmune checkpoint genesImmune cell infiltrationNaive B cellsCox regression analysisAssociated with increased survival ratesRisk scoring system
2021
WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway
Guo E, Xiao R, Wu Y, Lu F, Liu C, Yang B, Li X, Fu Y, Wang Z, Li Y, Huang Y, Li F, Wu X, You L, Qin T, Lu Y, Huang X, Ma D, Mills G, Sun C, Chen G. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway. Journal Of Experimental Medicine 2021, 219: e20210789. PMID: 34825915, PMCID: PMC8628262, DOI: 10.1084/jem.20210789.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAnimalsAntineoplastic Combined Chemotherapy ProtocolsCD8-Positive T-LymphocytesCell Cycle ProteinsCell Line, TumorEndogenous RetrovirusesEnzyme InhibitorsFemaleGene Expression Regulation, NeoplasticHCT116 CellsHumansImmune Checkpoint InhibitorsMice, Inbred BALB CMice, Inbred C57BLMice, Inbred NODMice, SCIDNeoplasms, ExperimentalProtein-Tyrosine KinasesPyrazolesPyrimidinonesRNA, Double-StrandedSignal TransductionTumor BurdenConceptsImmune checkpoint blockadeAnti-tumor immunityEndogenous retroviral elementsWEE1 inhibitionCheckpoint blockadeCD8+ T cell-dependent mannerSensitivity to immune checkpoint blockadeResponse to immune checkpoint blockadeAnti-tumor T cellsCombination of WEE1 inhibitorT cell-dependent mannerPathway-targeted therapiesMultiple tumor modelsPopulation of patientsEmergence of resistanceDown-regulating FoxM1Viral defense pathwaysPD-L1Tumor regressionCombination therapyTargeted therapyCombination partnerT cellsPatient selectionWEE1 inhibitor
2017
The metastasis status and tumor burden-associated CA125 level combined with the CD4/CD8 ratio predicts the prognosis of patients with advanced pancreatic cancer: A new scoring system
Yang C, Cheng H, Luo G, Lu Y, Guo M, Jin K, Wang Z, Yu X, Liu C. The metastasis status and tumor burden-associated CA125 level combined with the CD4/CD8 ratio predicts the prognosis of patients with advanced pancreatic cancer: A new scoring system. European Journal Of Surgical Oncology 2017, 43: 2112-2118. PMID: 28802662, DOI: 10.1016/j.ejso.2017.07.010.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBiomarkers, TumorCA-125 AntigenCarcinoma, Pancreatic DuctalCD4 Lymphocyte CountCD8-Positive T-LymphocytesFemaleFlow CytometryHumansMaleMiddle AgedNeoplasm MetastasisNeoplasm StagingPancreatic NeoplasmsPredictive Value of TestsPrognosisRetrospective StudiesSurvival RateTumor BurdenConceptsCD4/CD8 ratioNew scoring systemAdvanced pancreatic cancerCD8 ratioPrognosis of patientsCA125 levelsPancreatic cancerScoring systemPrognostic valueHigher CD4/CD8 ratioMultivariate analysisAdvanced pancreatic cancer patientsComplete clinical dataHigher CA125 levelsKaplan-Meier methodIndependent prognostic factorPancreatic cancer patientsLog-rank testTumor immune responseCox hazard modelPrognostic factorsCancer patientsMetastasis statusClinical dataImmune response
2012
Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer
Jenq R, Curran M, Goldberg G, Liu C, Allison J, van den Brink M. Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer. PLOS ONE 2012, 7: e35222. PMID: 22493742, PMCID: PMC3320876, DOI: 10.1371/journal.pone.0035222.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAnimalsAntigens, NeoplasmCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDEAD-box RNA HelicasesFemaleGraft vs Host DiseaseHumansImmunotherapy, AdoptiveLymphocyte CountMaleMiceMinor Histocompatibility AntigensNeoplasm TransplantationProstatic NeoplasmsSex FactorsWhole-Body IrradiationConceptsCD4 T cellsT cellsProstatic adenocarcinoma cellsAdoptive transferProstate cancerEffective anti-tumor immune responseCancer-reactive T cellsCD8 T cell responsesHigh-affinity T cellsPotential tumor rejection antigensTRAMP-C2 tumor cellsAnti-tumor immune responseAdenocarcinoma cellsExacerbation of graftPresence of CD25Female lymphocytesRegulatory T cellsAdoptive transfer modelReactive T cellsT cell responsesT cell repertoireMurine prostate cancerProstate cancer antigenAdult male hostsTumor rejection antigens
2011
Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic–derived antigen-presenting cells
Toubai T, Tawara I, Sun Y, Liu C, Nieves E, Evers R, Friedman T, Korngold R, Reddy P. Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic–derived antigen-presenting cells. Blood 2011, 119: 3844-3853. PMID: 22101894, PMCID: PMC3335388, DOI: 10.1182/blood-2011-10-384057.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAnimalsAntigen-Presenting CellsBone Marrow TransplantationCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedDendritic CellsEndothelial CellsFemaleGraft vs Host DiseaseHematopoiesisHistocompatibilityH-Y AntigenIsoantigensMaleMiceMice, Inbred BALB CMice, Inbred C57BLMice, Mutant StrainsRadiation ToleranceThymectomyConceptsAcute GVHDT cellsAg presentationAlloreactive donor T cellsAllogeneic BM transplantationDonor T cellsMinor histocompatibility AgAntigen-presenting cellsGvH responseGVHD lethalityBM transplantationHistocompatibility AgClinical dataGVHDY antigenAPCY AgPresentationCellsTransplantationAbsenceInfusionAntigenRecipientsCeacam1 Separates Graft-versus-Host-Disease from Graft-versus-Tumor Activity after Experimental Allogeneic Bone Marrow Transplantation
Lu S, Kappel L, Charbonneau-Allard A, Atallah R, Holland A, Turbide C, Hubbard V, Rotolo J, Smith M, Suh D, King C, Rao U, Yim N, Bautista J, Jenq R, Penack O, Na I, Liu C, Murphy G, Alpdogan O, Blumberg R, Macian F, Holmes K, Beauchemin N, van den Brink M. Ceacam1 Separates Graft-versus-Host-Disease from Graft-versus-Tumor Activity after Experimental Allogeneic Bone Marrow Transplantation. PLOS ONE 2011, 6: e21611. PMID: 21760897, PMCID: PMC3130781, DOI: 10.1371/journal.pone.0021611.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationCarcinoembryonic AntigenCD8-Positive T-LymphocytesCell PolarityCell ProliferationCytotoxicity, ImmunologicDendritic CellsGraft vs Host DiseaseGraft vs Tumor EffectHumansIntegrinsIntestine, SmallLymphocyte ActivationLymphocyte CountLymphoid TissueMiceOrgan SpecificityRadiation Injuries, ExperimentalRadiation, IonizingTransplantation, HomologousConceptsAllogeneic bone marrow transplantationBone marrow transplantationDonor T cellsCD8 T cellsT cellsMarrow transplantationGVHD mortalityTumor activityExperimental allogeneic bone marrow transplantationInflammatory bowel disease modelCell adhesion molecule-1GVHD target tissuesRegulation of GVHDTarget tissuesT cell numbersAlloreactive T cellsAdhesion molecule-1T cell activationVariety of physiologicAllo-BMTSystemic GVHDHost diseaseSmall intestinal cryptsDonor graftsAllogeneic transplantationIkaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease
Toubai T, Sun Y, Tawara I, Friedman A, Liu C, Evers R, Nieves E, Malter C, Chockley P, Maillard I, Winandy S, Reddy P. Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood 2011, 118: 192-204. PMID: 21471527, PMCID: PMC3139384, DOI: 10.1182/blood-2010-12-324616.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen-Presenting CellsCD8-Positive T-LymphocytesCells, CulturedDendritic CellsDisease Models, AnimalFemaleGraft vs Host DiseaseHematopoiesisIkaros Transcription FactorImmunophenotypingMaleMiceMice, Inbred BALB CMice, Inbred C3HMice, Inbred C57BLMice, Mutant StrainsReceptor, Notch1Signal TransductionConceptsDendritic cellsAcute GVHDDonor T cell expansionExperimental bone marrow transplantationHost hematopoietic cellsInduction of GVHDAllogeneic T cellsBone marrow transplantationT cell expansionRelevant murine modelGvH responseAllostimulatory capacityHost diseaseWild-type controlsDC biologyMarrow transplantationPotent APCsActivation markersTLR stimulationT cellsMurine modelGVHDExperimental graftEnhanced stimulationIkaros deficiency
2009
Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease
Rotolo J, Stancevic B, Lu S, Zhang J, Suh D, King C, Kappel L, Murphy G, Liu C, Fuks Z, van den Brink M, Kolesnick R. Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 2009, 114: 3693-3706. PMID: 19666872, PMCID: PMC2766684, DOI: 10.1182/blood-2008-11-191148.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBone Marrow TransplantationCD8-Positive T-LymphocytesCell MembraneCeramidesCytokinesDisease Models, AnimalFemaleGraft vs Host DiseaseHepatocytesInterferon-gammaIntestine, SmallLiverLymphocyte ActivationMaleMiceMice, Inbred C57BLMice, Inbred MRL lprMice, SCIDSkinSphingomyelin PhosphodiesteraseSurvival RateT-Lymphocytes, CytotoxicConceptsHost diseaseT cellsT cell proliferation/activationAllogeneic bone marrowAcute inflammatory phaseRelevant mouse modelTumor necrosis factorCytolytic T cellsProliferation/activationCytolytic T lymphocytesPotential new targetsHost target cellsTarget cell membraneAcute graftAcute GVHDGVHD progressionCytokine stormOrgan injuryNecrosis factorGVHDInflammatory phaseRelevant graftT lymphocytesMouse modelBone marrow
2007
IFN-γ and Fas Ligand Are Required for Graft-versus-Tumor Activity against Renal Cell Carcinoma in the Absence of Lethal Graft-versus-Host Disease
Ramirez-Montagut T, Chow A, Kochman A, Smith O, Suh D, Sindhi H, Lu S, Borsotti C, Grubin J, Patel N, Terwey T, Kim T, Heller G, Murphy G, Liu C, Alpdogan O, van den Brink M. IFN-γ and Fas Ligand Are Required for Graft-versus-Tumor Activity against Renal Cell Carcinoma in the Absence of Lethal Graft-versus-Host Disease. The Journal Of Immunology 2007, 179: 1669-1680. PMID: 17641033, DOI: 10.4049/jimmunol.179.3.1669.Peer-Reviewed Original ResearchConceptsRenal cell carcinomaMurine renal cell carcinomaT cellsCell carcinomaGVT activityHost diseaseRenca cellsIFN-gammaTumor activityAllogeneic bone marrow transplantation modelFas ligandAbsence of graftRecipients of IFNBone marrow transplantation modelMechanism of graftMembrane-bound TNF-alphaTumor-bearing miceLethal graftLethal GVHDSevere GVHDTNF-alphaTransplantation modelTransplanted miceLytic capacitySolid tumors
2006
An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens
Wang B, He J, Liu C, Chang L. An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 2006, 24: 3477-3489. PMID: 16530303, PMCID: PMC1850619, DOI: 10.1016/j.vaccine.2006.02.025.Peer-Reviewed Original ResearchConceptsTumor-associated antigensDendritic cellsModification of DCsMultiple tumor-associated antigensStrong anti-tumor responsesReactive dendritic cellsAnti-tumor responseT cell responsesLentiviral vectorsCancer-specific antigensCell antigen 2Tumor-bearing miceThymidine kinase suicide geneDC vaccinesVaccine modalitiesCancer immunotherapyCancer patientsTherapeutic injectionsTherapeutic effectExtended survivalAntigen 2Danger signalsVivo eliminationCell responsesTherapeutic potential
2005
CCR2 is required for CD8-induced graft-versus-host disease
Terwey T, Kim T, Kochman A, Hubbard V, Lu S, Zakrzewski J, Ramirez-Montagut T, Eng J, Muriglan S, Heller G, Murphy G, Liu C, Budak-Alpdogan T, Alpdogan O, van den Brink M. CCR2 is required for CD8-induced graft-versus-host disease. Blood 2005, 106: 3322-3330. PMID: 16037386, PMCID: PMC1895329, DOI: 10.1182/blood-2005-05-1860.Peer-Reviewed Original ResearchConceptsCC chemokine receptor 2Hematopoietic stem cell transplantationDevelopment of GVHDT cellsT cell migrationHost diseaseAllogeneic hematopoietic stem cell transplantationDonor-derived T cellsControl of CD8Donor-derived CD8GVHD target organsMurine bone marrow transplantation modelBone marrow transplantation modelStem cell transplantationChemokine receptor 2IFN-gamma productionWild-type CD8Alloreactive proliferationDonor CD8GVHD morbidityGVT activityTumor effectMajor complicationsCCR2 signalingCell transplantation
2004
An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection
Cabrera R, Tu Z, Xu Y, Firpi R, Rosen H, Liu C, Nelson D. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004, 40: 1062-1071. PMID: 15486925, DOI: 10.1002/hep.20454.Peer-Reviewed Original ResearchMeSH KeywordsAntibodiesAntibody FormationAntigens, CDCase-Control StudiesCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell CommunicationEpitopesHepatitis CHepatitis C AntigensHumansImmune SystemInterleukin-10PhenotypeReceptors, Interleukin-2Transforming Growth Factor betaTransforming Growth Factor beta1ConceptsHepatitis C virus infectionPeripheral blood mononuclear cellsC virus infectionRegulatory T lymphocytesBlood mononuclear cellsT lymphocytesMononuclear cellsVirus infectionHCV-specific T-cell responsesCell-cell contact mannerT cell immune responsesHCV RNA titersT cell frequenciesIL-10 productionT cell responsesCell immune responsesInterferon-gamma productionLiver inflammatory activityNormal control subjectsT cell proliferationInterferon gamma activityGrowth factor betaIL-10Intracellular cytokinesInflammatory activityBoth perforin and Fas ligand are required for the regulation of alloreactive CD8+ T cells during acute graft-versus-host disease
Maeda Y, Levy R, Reddy P, Liu C, Clouthier S, Teshima T, Ferrara J. Both perforin and Fas ligand are required for the regulation of alloreactive CD8+ T cells during acute graft-versus-host disease. Blood 2004, 105: 2023-2027. PMID: 15466930, DOI: 10.1182/blood-2004-08-3036.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAnimalsBone Marrow TransplantationCD8-Positive T-LymphocytesCell Culture TechniquesFas Ligand ProteinGraft vs Host DiseaseHistocompatibilityHistocompatibility Antigens Class ILymphocyte TransfusionMembrane GlycoproteinsMiceMice, Inbred StrainsModels, AnimalPerforinPore Forming Cytotoxic ProteinsTransplantation, HomologousConceptsT cellsHost diseaseAllogeneic bone marrow transplantationT cell-mediated cytotoxicityTumor necrosis factor alphaMajor histocompatibility complex class IGreater serum levelsDonor T cellsBone marrow transplantationCell-mediated cytotoxicityHistocompatibility complex class IWild-type T cellsNecrosis factor alphaComplex class ILethal GVHDAcute graftAlloreactive CD8Histopathologic damageMarrow transplantationSerum levelsAlloantigen stimulationIrradiated murine modelFactor alphaCD8Murine modelParadoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation
Min C, Maeda Y, Lowler K, Liu C, Clouthier S, Lofthus D, Weisiger E, Ferrara J, Reddy P. Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 2004, 104: 3393-3399. PMID: 15280194, DOI: 10.1182/blood-2004-02-0763.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAnimalsAntibodies, MonoclonalApoptosisBone Marrow TransplantationCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCytokinesDisease Models, AnimalFemaleGraft vs Host DiseaseHistocompatibility Antigens Class IHistocompatibility Antigens Class IIInterleukin-18Interleukin-18 Receptor alpha SubunitMiceMice, Inbred C57BLReceptors, InterleukinReceptors, Interleukin-18Severity of Illness IndexT-Lymphocytes, CytotoxicTransplantation, HomologousConceptsAllogeneic bone marrow transplantationBone marrow transplantationExperimental allogeneic bone marrow transplantationDonor T cellsIL-18T cellsAcute GVHDAcute graftHost diseaseInterleukin-18Marrow transplantationClinical allogeneic bone marrow transplantationMajor histocompatibility complex class IIHistocompatibility complex class IIEndogenous IL-18Experimental acute graftT cell subsetsParadoxical effectFas-dependent mannerLess GVHDCytotoxic functionHistopathologic parametersGVHDClass IIFas expressionHost Dendritic Cells Alone Are Sufficient to Initiate Acute Graft-versus-Host Disease
Duffner U, Maeda Y, Cooke K, Reddy P, Ordemann R, Liu C, Ferrara J, Teshima T. Host Dendritic Cells Alone Are Sufficient to Initiate Acute Graft-versus-Host Disease. The Journal Of Immunology 2004, 172: 7393-7398. PMID: 15187116, DOI: 10.4049/jimmunol.172.12.7393.Peer-Reviewed Original ResearchConceptsHost dendritic cellsDendritic cellsB cellsT cellsAcute GVHDHost diseaseHost-derived dendritic cellsLethal acute GVHDAllogeneic dendritic cellsII-deficient miceMHC class IIMHC class IAcute graftChimeric recipientsHost APCsAPC subsetsAlloantigen expressionGVHDMHC classClass IIClass IRobust proliferationSelective targetingGraftDisease
2003
Role of CXCR3-induced donor T-cell migration in acute GVHD
Duffner U, Lu B, Hildebrandt G, Teshima T, Williams D, Reddy P, Ordemann R, Clouthier S, Lowler K, Liu C, Gerard C, Cooke K, Ferrara J. Role of CXCR3-induced donor T-cell migration in acute GVHD. Experimental Hematology 2003, 31: 897-902. PMID: 14550805, DOI: 10.1016/s0301-472x(03)00198-x.Peer-Reviewed Original ResearchConceptsRole of CXCR3T cellsAcute GVHDDonor T cell expansionDonor T cell migrationDonor T cellsExpression of CXCR3GVHD target organsDonor cellsEffector T cellsBone marrow transplantation modelDonor T-cell functionMinor histocompatibility antigensT cell expansionWild-type B6Chemokine receptor CXCR3T cell functionWild-type T cellsWild-type donor cellsT cell migrationMigration of donorWild-type donorsAcute graftHost diseaseBMT recipientsRepifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect
Clouthier S, Cooke K, Teshima T, Lowler K, Liu C, Connolly K, Ferrara J. Repifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect. Transplantation And Cellular Therapy 2003, 9: 592-603. PMID: 14506661, DOI: 10.1016/s1083-8791(03)00230-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationCD4 Lymphocyte CountCD8-Positive T-LymphocytesCell DivisionCell Line, TumorDisease Models, AnimalFemaleFibroblast Growth Factor 10Fibroblast Growth FactorsGraft vs Host DiseaseGraft vs Leukemia EffectHumansInterferon-gammaInterleukin-2IntestinesLipopolysaccharidesLiverLymphocyte CountMiceMice, Inbred C57BLMice, Inbred StrainsRecombinant ProteinsSpleenT-LymphocytesT-Lymphocytes, CytotoxicTransplantation, HomologousTumor Necrosis Factor-alphaConceptsBone marrow transplantationAllogeneic bone marrow transplantationAllogeneic BMT recipientsSystemic GVHDGVL effectHost diseaseBMT recipientsTumor necrosis factor alphaBeneficial GVL effectInduction of GVHDSeverity of graftToxicity of GVHDMurine BMT modelBone marrow inoculumNecrosis factor alphaT cell proliferationRecombinant human keratinocyte growth factorHuman keratinocyte growth factorKeratinocyte growth factorLeukemia effectLeukemia responseSerum levelsMarrow transplantationControl miceOrgan histopathologyCD8+ T‐cell interaction with HCV replicon cells: Evidence for both cytokine‐ and cell‐mediated antiviral activity
Liu C, Zhu H, Tu Z, Xu Y, Nelson D. CD8+ T‐cell interaction with HCV replicon cells: Evidence for both cytokine‐ and cell‐mediated antiviral activity. Hepatology 2003, 37: 1335-1342. PMID: 12774012, DOI: 10.1053/jhep.2003.50207.Peer-Reviewed Original ResearchConceptsHepatitis C virusHCV replicon cellsAntiviral activityReplicon cellsHCV repliconMechanisms of HCVAnti-tumor necrosis factor alphaHCV subgenomic replicon systemAnti-interferon gammaDirect cytolytic effectHLA-A11 alleleNecrosis factor alphaHLA class IHost immune responseSubgenomic replicon systemT cell interactionsT-cell bindingHCV nonstructural proteinsCytolytic functionHCV interactionC virusSpecific lysisInfected hepatocytesTNF-alphaAntiviral effectImpaired thymic negative selection causes autoimmune graft-versus-host disease
Teshima T, Reddy P, Liu C, Williams D, Cooke K, Ferrara J. Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood 2003, 102: 429-435. PMID: 12663438, DOI: 10.1182/blood-2003-01-0266.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAutoimmune DiseasesBone Marrow TransplantationCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedClonal DeletionDendritic CellsEpithelial CellsFemaleGraft vs Host DiseaseInflammation MediatorsInterleukin-1MiceMice, Inbred C57BLRadiation ChimeraRadiation ToleranceSelf ToleranceSkinSpleenThymectomyThymus GlandT-Lymphocyte SubsetsTumor Necrosis Factor-alphaVisceraConceptsThymic negative selectionSystemic autoimmune diseaseAntigen-presenting cellsAutoimmune diseasesHost diseaseT cellsAutoreactive T cell repertoireClass IIThymic antigen-presenting cellsMajor histocompatibility complex class IIHistocompatibility complex class IIImpaired negative selectionLethal autoimmune diseaseBone marrow chimerasPeripheral regulatory mechanismsT cell repertoireMHC class IIMHC class INegative selectionAcute graftAcute GVHDAutoimmune graftPeripheral CD4Adoptive transferNaive mice
2000
Apoptosis and Regeneration of Hepatocytes during Recovery from Transient Hepadnavirus Infections
Guo J, Zhou H, Liu C, Aldrich C, Saputelli J, Whitaker T, Barrasa M, Mason W, Seeger C. Apoptosis and Regeneration of Hepatocytes during Recovery from Transient Hepadnavirus Infections. Journal Of Virology 2000, 74: 1495-1505. PMID: 10627561, PMCID: PMC111485, DOI: 10.1128/jvi.74.3.1495-1505.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDNA, ViralHepatitis BHepatitis B Virus, WoodchuckHepatitis B, ChronicInterferon-gammaLiverLiver RegenerationMarmotaMolecular Sequence DataReverse Transcriptase Polymerase Chain ReactionTumor Necrosis Factor-alphaViremiaConceptsRegeneration of hepatocytesHepadnavirus infectionTransient infectionHepatitis B virus infectionTumor necrosis factor alphaTransient hepadnavirus infectionsB virus infectionT cell accumulationNecrosis factor alphaCytokine expressionInfected hepatocytesFactor alphaT cellsVirus infectionInterferon gammaInfected liverHistologic analysisLiver tissueInfectionRecovery periodSignificant increaseHepatocytesInitial influxUnknown mechanismApoptosis