2021
WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway
Guo E, Xiao R, Wu Y, Lu F, Liu C, Yang B, Li X, Fu Y, Wang Z, Li Y, Huang Y, Li F, Wu X, You L, Qin T, Lu Y, Huang X, Ma D, Mills G, Sun C, Chen G. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway. Journal Of Experimental Medicine 2021, 219: e20210789. PMID: 34825915, PMCID: PMC8628262, DOI: 10.1084/jem.20210789.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAnimalsAntineoplastic Combined Chemotherapy ProtocolsCD8-Positive T-LymphocytesCell Cycle ProteinsCell Line, TumorEndogenous RetrovirusesEnzyme InhibitorsFemaleGene Expression Regulation, NeoplasticHCT116 CellsHumansImmune Checkpoint InhibitorsMice, Inbred BALB CMice, Inbred C57BLMice, Inbred NODMice, SCIDNeoplasms, ExperimentalProtein-Tyrosine KinasesPyrazolesPyrimidinonesRNA, Double-StrandedSignal TransductionTumor BurdenConceptsImmune checkpoint blockadeAnti-tumor immunityEndogenous retroviral elementsWEE1 inhibitionCheckpoint blockadeCD8+ T cell-dependent mannerSensitivity to immune checkpoint blockadeResponse to immune checkpoint blockadeAnti-tumor T cellsCombination of WEE1 inhibitorT cell-dependent mannerPathway-targeted therapiesMultiple tumor modelsPopulation of patientsEmergence of resistanceDown-regulating FoxM1Viral defense pathwaysPD-L1Tumor regressionCombination therapyTargeted therapyCombination partnerT cellsPatient selectionWEE1 inhibitor
2016
ALDOA functions as an oncogene in the highly metastatic pancreatic cancer
Ji S, Zhang B, Liu J, Qin Y, Liang C, Shi S, Jin K, Liang D, Xu W, Xu H, Wang W, Wu C, Liu L, Liu C, Xu J, Ni Q, Yu X. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Letters 2016, 374: 127-135. PMID: 26854714, DOI: 10.1016/j.canlet.2016.01.054.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkers, TumorCadherinsCarcinoma, Pancreatic DuctalCell Line, TumorFructose-Bisphosphate AldolaseGlycolysisHeterograftsHigh-Throughput Screening AssaysHumansMaleMiceMice, NudeNeoplasm InvasivenessNeoplasm MetastasisOncogenesPancreatic NeoplasmsReactive Oxygen SpeciesSignal TransductionConceptsHigh-throughput screening analysisAldolase APancreatic cancerRegulation of c-MycTGF-bE-cadherinAnalyzed gene expression signaturesRegulation of glycolysisResistant to conventional treatmentPancreatic cancer cell line PANC-1Cancer metabolic changesPrognosis of pancreatic cancerTransforming growth factor-bSubgroup of patientsCell line PANC-1Metastasis of pancreatic cancer cellsPoor prognosis of pancreatic cancerExpression regulationGene expression signaturesPancreatic cancer tissue samplesPancreatic cancer cellsGlycolytic genesGrowth factor BE-cadherin expressionCancer tissue samples
2015
Human Mesenchymal Stromal Cells Attenuate Graft‐Versus‐Host Disease and Maintain Graft‐Versus‐Leukemia Activity Following Experimental Allogeneic Bone Marrow Transplantation
Auletta J, Eid S, Wuttisarnwattana P, Silva I, Metheny L, Keller M, Guardia‐Wolff R, Liu C, Wang F, Bowen T, Lee Z, Solchaga L, Ganguly S, Tyler M, Wilson D, Cooke K. Human Mesenchymal Stromal Cells Attenuate Graft‐Versus‐Host Disease and Maintain Graft‐Versus‐Leukemia Activity Following Experimental Allogeneic Bone Marrow Transplantation. Stem Cells 2015, 33: 601-614. PMID: 25336340, PMCID: PMC4304927, DOI: 10.1002/stem.1867.Peer-Reviewed Original ResearchConceptsT cell expansionT cell proliferationGraft-VersusHost diseaseLeukemia activityExperimental allogeneic bone marrow transplantationDonor T cell expansionAllogeneic bone marrow transplantationCytotoxic T cell activityAlloreactive T cell proliferationPotent GVL effectCyclo-oxygenase inhibitionT cell activityT cell suppressionBone marrow transplantationMarrow-derived mesenchymal stromal cellsSecondary lymphoid organsSplenic T cellsSplenic marginal zoneMixed leukocyte cultureMesenchymal stromal cellsBMT miceEP2 agonismGVL activityGVL effect
2014
Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip
Sheng W, Ogunwobi O, Chen T, Zhang J, George T, Liu C, Fan Z. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab On A Chip 2014, 14: 89-98. PMID: 24220648, PMCID: PMC3918168, DOI: 10.1039/c3lc51017d.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, ImmobilizedAntigens, NeoplasmAntineoplastic AgentsCell Adhesion MoleculesCell Line, TumorCell SeparationCell SurvivalEpithelial Cell Adhesion MoleculeHumansLeukocyte Common AntigensMaleMicrofluidic Analytical TechniquesNeoplastic Cells, CirculatingPancreatic NeoplasmsTomography, X-Ray ComputedConceptsHigh-performance microchipsMicromixer structurePresented technologyReal-time monitoringChannel geometryFlow rateTransverse flowCapture efficiencyChipDevicesCell capturePersonalized therapeutic treatmentsTumor cell captureAntibody-coated surfaceGreat promiseSpiked tumor cellsIsolation of CTCsWide rangeCancer patients' blood
2013
Epigenetic Upregulation of HGF and c-Met Drives Metastasis in Hepatocellular Carcinoma
Ogunwobi O, Puszyk W, Dong H, Liu C. Epigenetic Upregulation of HGF and c-Met Drives Metastasis in Hepatocellular Carcinoma. PLOS ONE 2013, 8: e63765. PMID: 23723997, PMCID: PMC3665785, DOI: 10.1371/journal.pone.0063765.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCarcinogenesisCarcinoma, HepatocellularCell Line, TumorDNA MethylationEpigenesis, GeneticEpithelial-Mesenchymal TransitionGene Expression Regulation, NeoplasticHepatocyte Growth FactorHumansLiver NeoplasmsMesodermMiceMice, Inbred BALB CModels, BiologicalMolecular Sequence DataNeoplastic Cells, CirculatingPromoter Regions, GeneticProto-Oncogene Proteins c-metUp-RegulationConceptsEpithelial-mesenchymal transitionHepatocyte growth factorExpression of HGFHepatocellular carcinomaC-MetHematogenous disseminationTumor cellsRole of HGFOrthotopic syngeneic modelsMetastatic hepatocellular carcinomaMouse HCC modelC-Met expressionUpregulation of HGFPrimary tumor cellsPromoter demethylationNovel non-invasive approachPotential clinical applicationsPeripheral bloodSyngeneic modelHCC managementDrives metastasisEpigenetic upregulationHCC modelTumor progressionMetastatic potentialAdoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity
Ghosh A, Dogan Y, Moroz M, Holland A, Yim N, Rao U, Young L, Tannenbaum D, Masih D, Velardi E, Tsai J, Jenq R, Penack O, Hanash A, Smith O, Piersanti K, Lezcano C, Murphy G, Liu C, Palomba M, Sauer M, Sadelain M, Ponomarev V, van den Brink M. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. Journal Of Clinical Investigation 2013, 123: 2654-2662. PMID: 23676461, PMCID: PMC3668849, DOI: 10.1172/jci66301.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAntigen-Presenting CellsCell Line, TumorCytotoxicity, ImmunologicGraft RejectionGraft vs Host DiseaseHEK293 CellsHumansImmunotherapy, AdoptiveLeukemia, Lymphocytic, Chronic, B-CellMiceMice, Inbred BALB CMice, Inbred C57BLNeoplasm TransplantationT-LymphocytesTNF-Related Apoptosis-Inducing LigandConceptsGVT responseT cellsAllo-HSCTAllogeneic hematopoietic stem cell transplantationHematopoietic stem cell transplantationCellular therapyAbsence of GVHDDR5-dependent mannerDonor T cellsAlloreactive T cellsStem cell transplantationChronic lymphocytic leukemia cellsPrecursor T cellsThird-party donorsLymphocytic leukemia cellsApoptosis-inducing ligandGVT activityHost diseaseCell transplantationCurative potentialTumor responseGVHDCertain malignanciesMouse modelHuman leukemia cell lines
2012
DNA Aptamer‐Mediated Cell Targeting
Xiong X, Liu H, Zhao Z, Altman M, Lopez‐Colon D, Yang C, Chang L, Liu C, Tan W. DNA Aptamer‐Mediated Cell Targeting. Angewandte Chemie International Edition 2012, 52: 1472-1476. PMID: 23233389, PMCID: PMC3793636, DOI: 10.1002/anie.201207063.Peer-Reviewed Original ResearchOPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma
Zhao X, Tian C, Puszyk W, Ogunwobi O, Cao M, Wang T, Cabrera R, Nelson D, Liu C. OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Laboratory Investigation 2012, 93: 8-19. PMID: 23108376, PMCID: PMC3860369, DOI: 10.1038/labinvest.2012.144.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCarcinoma, HepatocellularCell Line, TumorCytochromes cDown-RegulationGene Knockdown TechniquesGTP PhosphohydrolasesHumansLiverLiver NeoplasmsMiceMice, SCIDMitochondriaNiacinamidePhenylurea CompoundsPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktRaf KinasesRas ProteinsRNA, Small InterferingSignal TransductionSorafenibXenograft Model Antitumor AssaysConceptsHepatocellular carcinomaSorafenib-induced apoptosisHCC xenograft tumor growthOptic atrophy 1HCC cellsPatients' hepatocellular carcinomaNon-tumor tissue samplesAdvanced hepatocellular carcinomaPathogenesis of HCCNovel therapeutic targetTumorigenesis of HCCXenograft tumor growthTumor tissue analysisNormal human primary hepatocytesHuman primary hepatocytesCell growth inhibitionSorafenib treatmentHCC patientsTherapeutic targetExposure of cellsTumor growthMitochondrial injuryPatientsSorafenibOPA1 expressionNanoparticle-based artificial RNA silencing machinery for antiviral therapy
Wang Z, Liu H, Yang S, Wang T, Liu C, Cao Y. Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 12387-12392. PMID: 22802676, PMCID: PMC3412013, DOI: 10.1073/pnas.1207766109.Peer-Reviewed Original ResearchConceptsFundamental gene regulatory mechanismsHepatitis C virusGene regulatory mechanismsCultured cellsTarget RNA cleavageSequence-specific mannerCellular interferon responseFunctional genomicsHuman hepatoma cellsRNA interferenceArtificial RNARegulatory mechanismsMouse modelRNA cleavageCultured human hepatoma cellsSpecific mannerHCV RNA levelsRNAXenotransplantation mouse modelHepatoma cellsInterferon responsePotent antiviral activityRNA levelsMachineryProteinase activityTargeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer
Meng L, Yang L, Zhao X, Zhang L, Zhu H, Liu C, Tan W. Targeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer. PLOS ONE 2012, 7: e33434. PMID: 22558072, PMCID: PMC3338807, DOI: 10.1371/journal.pone.0033434.Peer-Reviewed Original ResearchConceptsAptamer-drug conjugatesCancer-specific aptamersAntitumor agent doxorubicinDOX conjugatesIntercalation methodAptamerCell viability testTargeted deliveryConjugatesCancer cellsTarget proteinsAgent doxorubicinPotential candidateCell linesDOXEfficiency of chemotherapyLiver cancer cellsNonspecific uptakeTarget specificityAvailable aptamersCarcinoma cell linesChemotherapy agentsHepatocellular carcinoma cell linesHuman hepatocellular carcinoma cell linePromising method
2011
Survivin Inhibition Is Critical for Bcl-2 Inhibitor-Induced Apoptosis in Hepatocellular Carcinoma Cells
Zhao X, Ogunwobi O, Liu C. Survivin Inhibition Is Critical for Bcl-2 Inhibitor-Induced Apoptosis in Hepatocellular Carcinoma Cells. PLOS ONE 2011, 6: e21980. PMID: 21829603, PMCID: PMC3148218, DOI: 10.1371/journal.pone.0021980.Peer-Reviewed Original ResearchConceptsBcl-2 inhibitorsCombination treatmentHCC cellsABT-263Survivin inhibitionHepatocellular carcinomaHuman liver cancer tissuesSingle treatmentFuture clinical trialsApoptotic effectsLiver cancer tissuesLiver cancer therapyERK activationHCC cell linesHepatocellular carcinoma cellsPreclinical dataClinical trialsTherapeutic effectLow doseNormal human hepatocytesCancer tissuesYM-155High dosesNovel Bcl-2 inhibitorABT-263-induced apoptosisDevelopment of optimized AAV3 serotype vectors: mechanism of high-efficiency transduction of human liver cancer cells
Cheng B, Ling C, Dai Y, Lu Y, Glushakova L, Gee S, McGoogan K, Aslanidi G, Park M, Stacpoole P, Siemann D, Liu C, Srivastava A, Ling C. Development of optimized AAV3 serotype vectors: mechanism of high-efficiency transduction of human liver cancer cells. Gene Therapy 2011, 19: 375-384. PMID: 21776025, PMCID: PMC3519243, DOI: 10.1038/gt.2011.105.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCarcinoma, HepatocellularCell Line, TumorDependovirusFemaleGenetic VectorsHumansLiver NeoplasmsMiceMutagenesis, Site-DirectedProteasome InhibitorsProtein Structure, TertiaryProto-Oncogene Proteins c-metTransduction, GeneticTransplantation, HeterologousTyrosineVirus IntegrationConceptsHigh-efficiency transductionAAV3 vectorsTransduction efficiencySerotype vectorsSurface-exposed tyrosinePotential gene therapyHuman hepatocyte growth factor receptorHuman liver cancer cellsGene therapyLiver cancer cellsTransgene expressionVector entryAAV3 capsidsDirect intratumoral injectionAAV3Tail vein injectionLiver tumor cellsIntratumoral injectionCancer cellsEfficiencyAdenoVectorIntracellular kinase domainVirus serotypesHepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways
Ogunwobi O, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clinical & Experimental Metastasis 2011, 28: 721-731. PMID: 21744257, PMCID: PMC3732749, DOI: 10.1007/s10585-011-9404-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCadherinsCarcinoma, HepatocellularCell AdhesionCell DifferentiationCell Line, TumorCell MovementCell ProliferationCyclooxygenase 2Enzyme-Linked Immunosorbent AssayEpithelial-Mesenchymal TransitionExtracellular Signal-Regulated MAP KinasesHepatocyte Growth FactorLiver Neoplasms, ExperimentalMiceMice, Inbred BALB CNeoplasm InvasivenessPhosphorylationProto-Oncogene Proteins c-aktReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSignal TransductionUp-RegulationVimentinConceptsEpithelial-mesenchymal transitionHepatocyte growth factorCyclooxygenase-2Hepatocellular carcinomaBNL cellsMarkers of EMTDevelopment of HCCAdvanced hepatocellular carcinomaCOX-2 pathwayMetastatic hepatocellular carcinomaUpregulation of HGFMesenchymal characteristicsGrowth factor upregulationE-cadherinCharacteristic epithelial morphologyCancer mortalitySubsequent metastasisEMT markersImportant causeMigratory capacityHCC cellsBNL CLCancer progressionCollagen 1Growth factorCharacterization of HCV Interactions with Toll-Like Receptors and RIG-I in Liver Cells
Eksioglu E, Zhu H, Bayouth L, Bess J, Liu H, Nelson D, Liu C. Characterization of HCV Interactions with Toll-Like Receptors and RIG-I in Liver Cells. PLOS ONE 2011, 6: e21186. PMID: 21695051, PMCID: PMC3117876, DOI: 10.1371/journal.pone.0021186.Peer-Reviewed Original ResearchMeSH KeywordsCell DeathCell Line, TumorDEAD Box Protein 58DEAD-box RNA HelicasesDown-RegulationHepacivirusHost-Pathogen InteractionsHumansInterferon-betaLiverProtein BindingReceptors, ImmunologicSignal TransductionTNF-Related Apoptosis-Inducing LigandToll-Like ReceptorsViral Envelope ProteinsVirus ReplicationConceptsHuh7.5 cellsViral replicationHCV chronic patientsExpression of TLR3Toll-like receptorsHCV envelope proteinsExpression levelsRIG-I expressionHCV interactionChronic patientsHCVTRAIL pathwayViral escapeViral infectionInnate immunityViral pathogenesisTLR3Induction of apoptosisAntiviral stateIFN inductionLow expression levelsLiver cellsLH86Envelope proteinIFNKinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model
Cao M, Xu Y, Youn J, Cabrera R, Zhang X, Gabrilovich D, Nelson D, Liu C. Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Laboratory Investigation 2011, 91: 598-608. PMID: 21321535, PMCID: PMC3711234, DOI: 10.1038/labinvest.2010.205.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzenesulfonatesBone Marrow CellsCarcinoma, HepatocellularCell DivisionCell Line, TumorDisease ProgressionImmunity, CellularLiver NeoplasmsMiceMice, Inbred BALB CMyeloid CellsNiacinamidePhenylurea CompoundsProtein Kinase InhibitorsPyridinesSorafenibSpleenT-Lymphocytes, RegulatoryConceptsMyeloid-derived suppressor cellsImmunosuppressive cell populationsAnti-tumor immunityTumor-bearing hostsImmune cell populationsLiver cancer modelMurine liver cancer modelHepatocellular carcinomaCell populationsCancer modelNovel multi-kinase inhibitorSuppressive immune cell populationBALB/c miceDepletion of TregsImpact of sorafenibRegulatory T cellsAdvanced hepatocellular carcinomaTreatment of sorafenibKinase inhibitor sorafenibMulti-kinase inhibitorHCC cell growthSuppressor cellsTumor burdenC miceCancer patientsReactive Oxygen Species Is Essential for Cycloheximide to Sensitize Lexatumumab-Induced Apoptosis in Hepatocellular Carcinoma Cells
Zhao X, Cao M, Liu J, Zhu H, Nelson D, Liu C. Reactive Oxygen Species Is Essential for Cycloheximide to Sensitize Lexatumumab-Induced Apoptosis in Hepatocellular Carcinoma Cells. PLOS ONE 2011, 6: e16966. PMID: 21347335, PMCID: PMC3037406, DOI: 10.1371/journal.pone.0016966.Peer-Reviewed Original ResearchAntibodies, MonoclonalApoptosisBcl-2 Homologous Antagonist-Killer ProteinBcl-2-Associated X ProteinCarcinoma, HepatocellularCaspasesCell Line, TumorCycloheximideDrug InteractionsGene Expression Regulation, NeoplasticHSP90 Heat-Shock ProteinsHumansIntracellular SpaceLiver NeoplasmsReactive Oxygen SpeciesDNA Methylation Suppresses Expression of the Urea Cycle Enzyme Carbamoyl Phosphate Synthetase 1 (CPS1) in Human Hepatocellular Carcinoma
Liu H, Dong H, Robertson K, Liu C. DNA Methylation Suppresses Expression of the Urea Cycle Enzyme Carbamoyl Phosphate Synthetase 1 (CPS1) in Human Hepatocellular Carcinoma. American Journal Of Pathology 2011, 178: 652-661. PMID: 21281797, PMCID: PMC3069978, DOI: 10.1016/j.ajpath.2010.10.023.Peer-Reviewed Original ResearchMeSH KeywordsCarbamoyl-Phosphate Synthase (Ammonia)Carcinoma, HepatocellularCell Line, TumorCpG IslandsDNA MethylationGene Expression Regulation, EnzymologicGene Expression Regulation, NeoplasticHepatocyte Nuclear Factor 3-betaHepatocytesHumansLiver NeoplasmsPromoter Regions, GeneticQuaternary Ammonium CompoundsRNA, MessengerUreaConceptsHCC cellsNoncancerous tissuesTumor tissueHepatocyte paraffin 1 antibodySurgical pathology practiceLiver cancer tissuesHuman HCC cellsCPS1 expressionHCC tumor tissuesLiver tumor tissuesHuman hepatocellular carcinomaHuman hepatocellular carcinoma cellsCultured human primary hepatocytesHuman primary hepatocytesHepatocellular carcinoma cellsHepatocellular carcinomaCPS1 geneRate-limiting enzymeLiver carcinogenesisCancer tissuesSynthetase 1Potential biomarkersCarbamoyl phosphate synthetase 1Pathology practiceCarcinoma cells
2010
DNA Aptamers as Molecular Probes for Colorectal Cancer Study
Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W. DNA Aptamers as Molecular Probes for Colorectal Cancer Study. PLOS ONE 2010, 5: e14269. PMID: 21170319, PMCID: PMC3000811, DOI: 10.1371/journal.pone.0014269.Peer-Reviewed Original ResearchConceptsColorectal cancerAppropriate therapeutic regimensCell-based systematic evolutionColorectal Cancer StudyMolecular featuresMultistep carcinogenic processCancer cell linesCell line DLD-1Therapeutic regimensNormal colon cellsPrognostic markerDifferent tumorsSpecific tumorsFlow cytometrySpecific biomarkersEarly disease detectionCarcinogenic processTumorsCancerSpecific markersCancer studiesColon cellsDLD-1Cell linesDisease development
2009
AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells
Glushakova L, Lisankie M, Eruslanov E, Ojano-Dirain C, Zolotukhin I, Liu C, Srivastava A, Stacpoole P. AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells. Molecular Genetics And Metabolism 2009, 98: 289-299. PMID: 19586787, PMCID: PMC2779054, DOI: 10.1016/j.ymgme.2009.05.010.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCell Line, TumorDependovirusHumansLiver NeoplasmsPyruvate Dehydrogenase (Lipoamide)Transduction, GeneticTransfectionConceptsPyruvate dehydrogenase complexSubunit geneReporter geneWarburg effectCell deathCancer cellsGreen fluorescent reporter geneLiver cancer cellsAlpha-subunit geneFluorescent reporter geneHuman hepatoblastomaE1alpha subunit geneHuH-6 cellsApoptotic cell deathProtein expressionMitochondrial oxidative metabolismHuman alpha-fetoprotein promoterMitochondrial respiratory chain activityBeta-actin promoterRespiratory chain activityChicken beta-actin promoterReactive oxygen speciesExpression systemDehydrogenase complexMetabolic remodeling
2008
Identification of Liver Cancer-Specific Aptamers Using Whole Live Cells
Shangguan D, Meng L, Cao Z, Xiao Z, Fang X, Li Y, Cardona D, Witek R, Liu C, Tan W. Identification of Liver Cancer-Specific Aptamers Using Whole Live Cells. Analytical Chemistry 2008, 80: 721-728. PMID: 18177018, DOI: 10.1021/ac701962v.Peer-Reviewed Original ResearchConceptsLiver cancerLiver cancer cellsEarly diagnosisCell linesBALB/cJ miceCancer cellsSurgical resectionClinical outcomesLiver cell lineEffective treatmentMouse modelWhole live cellsDeadly cancerCurrent studyCancer-specific aptamersTumor selectionBasic mechanism studiesCancerMost cancersBNL CLCancer early diagnosisCell-SELEX methodNoncancer cell linesDiagnosisCancer recognition