SU‐E‐J‐24: Imaging Dose Dependence On Fractionation Scheme and Tracking Method in CyberKnife Robotic Radiosurgery
Tien C, Dieterich S, Lee S, Curran B, Sternick E. SU‐E‐J‐24: Imaging Dose Dependence On Fractionation Scheme and Tracking Method in CyberKnife Robotic Radiosurgery. Medical Physics 2013, 40: 154-154. DOI: 10.1118/1.4814236.Peer-Reviewed Original ResearchTracking methodAmorphous silicon flat-panel detectorRobotic radiosurgeryImaging doseFractionation schemeCyberKnife robotic radiosurgeryX-ray tubeDifferent fractionation schemesFlat-panel detectorEntrance skin exposureMedian numberStereotactic radiosurgerySkin exposureOperator adjustmentRadiosurgeryDoseKVPatientsSampling intervalCyberKnifeDose differenceSU‐E‐T‐438: Dosimetric Effect of Patient Arm Position in Spinal CyberKnife Robotic Radiosurgery
Mihaylov I, Tien C, Hepel J. SU‐E‐T‐438: Dosimetric Effect of Patient Arm Position in Spinal CyberKnife Robotic Radiosurgery. Medical Physics 2013, 40: 306-306. DOI: 10.1118/1.4814872.Peer-Reviewed Original ResearchPTV coverageSpinal cordMinimum doseExtremity motionDosimetric effectsPatient's arm positionArm positionCyberKnife robotic radiosurgeryPotential dosimetric effectsPrescription dosesSpinal lesionsCyberKnife radiosurgerySpine lesionsCyberKnife treatmentSupine positionTreatment planPatientsMaximum dosePatient's armComparison plansCritical organsMean differenceRobotic radiosurgeryDoseDosimetric impact