2011
Phosphate Sensing
Bergwitz C, Jüppner H. Phosphate Sensing. Advances In Kidney Disease And Health 2011, 18: 132-144. PMID: 21406298, PMCID: PMC3059779, DOI: 10.1053/j.ackd.2011.01.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAmino acid sequence conservationNumerous cellular functionsMulti-protein complexesDifferent signal transduction cascadesSignal transduction cascadeExpression of genesSignal transduction cascadesEukaryotic organismsMulticellular organismsMetazoan cellsMetazoan orthologsSequence conservationCellular functionsPHO pathwayTransduction cascadePlasma membraneAmbient phosphateCell metabolismExtracellular phosphateYeastGrowth of tissuesPhosphate sensorPhosphate homeostasisPhosphate uptakeCirculating phosphate levels
2008
Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone
Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schüler C, Erben RG, Lanske B. Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone. PLOS Genetics 2008, 4: e1000154. PMID: 18688277, PMCID: PMC2483943, DOI: 10.1371/journal.pgen.1000154.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone and BonesBone DensityCalcification, PhysiologicCells, CulturedFibroblast Growth Factor-23Fibroblast Growth FactorsGene ExpressionHypophosphatemiaMiceMice, Inbred C57BLMice, KnockoutMuscle, SkeletalOsteoblastsPhenotypePhosphatesSerumSkullSodium-Phosphate Cotransporter Proteins, Type IIaUrineConceptsFGF-23 geneFgf-23-/- micePhosphate homeostasisGenetic evidenceFgf-23-/-Regulation of phosphate homeostasisCrucial biological importanceFirst genetic evidenceSystemic phosphate homeostasisSkeletal mineralizationCellular functionsDouble mutantNew mouse lineMaster regulatorProtein abundanceGenomic ablationMolecular mechanismsDouble mutant miceChondrocyte differentiationTargeted disruptionSkeletal phenotypeBiological importanceGenesEnergy metabolismHomeostasis