2020
Description of a novel SLC34A3.c.671delT mutation causing hereditary hypophosphatemic rickets with hypercalciuria in two adolescent boys and response to recombinant human growth hormone
Dreimane D, Chen A, Bergwitz C. Description of a novel SLC34A3.c.671delT mutation causing hereditary hypophosphatemic rickets with hypercalciuria in two adolescent boys and response to recombinant human growth hormone. Therapeutic Advances In Musculoskeletal Disease 2020, 12: 1759720x20912862. PMID: 32963591, PMCID: PMC7488884, DOI: 10.1177/1759720x20912862.Peer-Reviewed Original ResearchRecombinant human growth hormoneHereditary hypophosphatemic ricketsOral phosphate supplementationAffected brothersHuman growth hormoneHypophosphatemic ricketsResponse to rhGHBorn to unrelated parentsSequence analysisParameters of mineral homeostasisPhosphate supplementationRenal phosphate leakWhole-exome sequencing analysisGrowth hormone therapyGrowth hormoneBiochemical parameters of mineral homeostasisAccelerated linear growthImprove linear growthUrine biochemical parametersAutosomal recessive disorderRenal phosphate reabsorptionAffected brotherExome sequencing analysisWhole-exome sequencingSanger sequencing analysis
2016
Impaired urinary osteopontin excretion in Npt2a−/− mice
Caballero D, Li Y, Ponsetto J, Zhu C, Bergwitz C. Impaired urinary osteopontin excretion in Npt2a−/− mice. American Journal Of Physiology. Renal Physiology 2016, 312: f77-f83. PMID: 27784695, PMCID: PMC5283892, DOI: 10.1152/ajprenal.00367.2016.Peer-Reviewed Original ResearchConceptsOPN gene expressionUrinary excretionRenal phosphate wasting disordersHigh-phosphate dietPhosphate wasting disordersOral phosphate supplementationRenal gene expressionRenal stone diseaseGene expressionAdditional risk factorsOPN levelsRole of OPNWasting disordersStone diseaseUrine excretionMouse modelNpt2aRisk factorsMouse mutationPhosphate supplementationRenal phosphateMiceRestored to wild-type levelsExcretionNephrocalcinosis