Featured Publications
The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology 2017, 25: 67-77.e3. PMID: 29129716, PMCID: PMC5831399, DOI: 10.1016/j.chembiol.2017.09.009.Peer-Reviewed Original ResearchMeSH KeywordsEnzyme InhibitorsHumansLigandsProteolysisReceptor Protein-Tyrosine KinasesUbiquitin-Protein LigasesConceptsReceptor tyrosine kinasesProtein familyProtein degradationTyrosine kinaseDownstream signaling responseTargeted Protein DegradationDevelopment of PROTACsTargeted degradationEndogenous proteinsSignaling responseChimera technologyCell proliferationPROTACsPROTAC technologyKinaseKinase inhibitorsLigand showAdvantages of degradationReceptor tyrosine kinase inhibitorsTyrosine kinase inhibitorsInhibitionDegradationFamilyPowerful toolProteolysisModular PROTAC Design for the Degradation of Oncogenic BCR‐ABL
Lai AC, Toure M, Hellerschmied D, Salami J, Jaime‐Figueroa S, Ko E, Hines J, Crews CM. Modular PROTAC Design for the Degradation of Oncogenic BCR‐ABL. Angewandte Chemie International Edition 2015, 55: 807-810. PMID: 26593377, PMCID: PMC4733637, DOI: 10.1002/anie.201507634.Peer-Reviewed Original ResearchCatalytic in vivo protein knockdown by small-molecule PROTACs
Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology 2015, 11: 611-617. PMID: 26075522, PMCID: PMC4629852, DOI: 10.1038/nchembio.1858.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBinding SitesBiocatalysisBreast NeoplasmsFemaleHumansMCF-7 CellsMiceModels, MolecularMolecular Targeted TherapyNeoplasm ProteinsNeoplasm TransplantationProteasome Endopeptidase ComplexProtein BindingProteolysisReceptor-Interacting Protein Serine-Threonine Kinase 2Receptors, EstrogenSmall Molecule LibrariesUbiquitinUbiquitinationVon Hippel-Lindau Tumor Suppressor Protein
2023
Protein degraders enter the clinic — a new approach to cancer therapy
Chirnomas D, Hornberger K, Crews C. Protein degraders enter the clinic — a new approach to cancer therapy. Nature Reviews Clinical Oncology 2023, 20: 265-278. PMID: 36781982, DOI: 10.1038/s41571-023-00736-3.Peer-Reviewed Original ResearchConceptsPhase III trialsCancer therapyNovel therapeutic modalitiesIII trialsClinical trialsPreclinical modelsClinical studiesTherapeutic modalitiesPharmacokinetic dataSmall molecule inhibitorsDisease pathogenesisClinical testingTumor typesDrug concentrationsPreclinical researchCancer treatmentPhase IFirst safetyUbiquitin-proteasome systemPatientsProtein degradersTherapyMore evidenceTrialsRigorous evaluation
2022
PROTACs: past, present and future
Li K, Crews CM. PROTACs: past, present and future. Chemical Society Reviews 2022, 51: 5214-5236. PMID: 35671157, PMCID: PMC10237031, DOI: 10.1039/d2cs00193d.Peer-Reviewed Original ResearchConceptsProtein of interestProteolysis-targeting chimerasUbiquitin-proteasome systemE3 ubiquitin ligaseSmall molecule inhibitorsUbiquitin ligaseNonenzymatic functionProtein degradationHeterobifunctional moleculesDrug resistance mechanismsMolecule inhibitorsSubsequent degradationUbiquitinationLigasePromising therapeuticsProteinChimerasPotential toxicityDegradationMechanismHijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation
Nalawansha DA, Li K, Hines J, Crews CM. Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal Of The American Chemical Society 2022, 144: 5594-5605. PMID: 35311258, PMCID: PMC10331457, DOI: 10.1021/jacs.2c00874.Peer-Reviewed Original ResearchConceptsE3 ligase complexLigase complexProtein degradationReader proteinsMethyl readersE3 ligaseProteasomal degradationPROTAC designProtein levelsProteinLigand pairsDrug discovery paradigmPROTACsNatural mechanismGeneralizable approachComplexesDiscovery paradigmCUL4BRD2DegradationLigaseL3MBTL3FKBP12Biological evaluationPromising strategyPROTAC targeted protein degraders: the past is prologue
Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery 2022, 21: 181-200. PMID: 35042991, PMCID: PMC8765495, DOI: 10.1038/s41573-021-00371-6.Peer-Reviewed Original Research
2021
Recent Developments in PROTAC‐Mediated Protein Degradation: From Bench to Clinic
Hu Z, Crews CM. Recent Developments in PROTAC‐Mediated Protein Degradation: From Bench to Clinic. ChemBioChem 2021, 23: e202100270. PMID: 34494353, PMCID: PMC9395155, DOI: 10.1002/cbic.202100270.Peer-Reviewed Original ResearchElectrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases
Zheng S, Crews CM. Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases. Biochemistry 2021, 60: 2367-2370. PMID: 34152723, DOI: 10.1021/acs.biochem.1c00301.Peer-Reviewed Original ResearchTargeted protein degradation: A promise for undruggable proteins
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology 2021, 28: 934-951. PMID: 34004187, PMCID: PMC8286327, DOI: 10.1016/j.chembiol.2021.04.011.Peer-Reviewed Original ResearchConceptsProteolysis Targeting ChimerasUndruggable proteinsDisease-causing proteinsProtein degradation strategiesProteostasis mechanismsProtein homeostasisTranscription factorsProtein degradationHeterobifunctional moleculesProteinDegradation strategiesDisease initiationBiological effectsProteostasisDegradationPotential therapeutic modalityHomeostasisChimerasCellsAccumulationBET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma
Fiskus W, Mill CP, Perera D, Birdwell C, Deng Q, Yang H, Lara BH, Jain N, Burger J, Ferrajoli A, Davis JA, Saenz DT, Jin W, Coarfa C, Crews CM, Green MR, Khoury JD, Bhalla KN. BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia 2021, 35: 2621-2634. PMID: 33654205, PMCID: PMC8410602, DOI: 10.1038/s41375-021-01181-w.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAnimalsAntineoplastic Combined Chemotherapy ProtocolsApoptosisBiomarkers, TumorBridged Bicyclo Compounds, HeterocyclicCell ProliferationCell Transformation, NeoplasticGene Expression Regulation, NeoplasticHumansLymphoma, Large B-Cell, DiffuseMicePiperidinesProteinsProteolysisSulfonamidesTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsLarge B-cell lymphomaB-cell lymphomaRichter transformationBET protein inhibitorLymphoma burdenImproved survivalCombination therapyC-Myc levelsEffective therapyNovel therapiesCell lymphomaXenograft modelProtein inhibitorTherapyBET inhibitorsProtein expressionCLLGenetic alterationsLymphomaInhibitorsIRF4Single-cell RNA-seqHuman modelCRISPR knockoutCellsMutant-selective degradation by BRAF-targeting PROTACs
Alabi S, Jaime-Figueroa S, Yao Z, Gao Y, Hines J, Samarasinghe KTG, Vogt L, Rosen N, Crews CM. Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications 2021, 12: 920. PMID: 33568647, PMCID: PMC7876048, DOI: 10.1038/s41467-021-21159-7.Peer-Reviewed Original ResearchConceptsInhibitor-based therapyBRAF inhibitor-based therapiesBRAF missense mutationsCancer cell growthBRAF V600Current treatmentNew therapiesTherapeutic windowXenograft modelBRAF mutantMutant BRAFVivo efficacyDrug modalitiesRaf family membersProteolysis targeting chimera (PROTAC) technologyTherapyBRAFMissense mutationsFamily membersBRAFWTCell growthDegree of selectivityInactivated conformationPatientsV600Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs
Alabi SB, Crews C. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal Of Biological Chemistry 2021, 296: 100647. PMID: 33839157, PMCID: PMC8131913, DOI: 10.1016/j.jbc.2021.100647.Peer-Reviewed Original ResearchConceptsProtein degradationProtein degradation pathwaysProteolysis targeting chimera (PROTAC) technologyUbiquitin-proteasome systemEndo-lysosomal pathwaySmall molecule inhibitorsDruggable spaceChemical toolsInnovative chemical toolMolecular glueChimera technologyProtein moleculesDegradation pathwayOutstanding questionsCurrent understandingMajor advancesPathwayAutophagyPROTACsDegradationCellsInhibitorsAdvances
2017
BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells
Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Saenz DT, Mill CP, Nowak AJ, Jain N, Zhang L, Wang M, Khoury JD, Coarfa C, Crews CM, Bhalla KN. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 2017, 32: 343-352. PMID: 28663582, DOI: 10.1038/leu.2017.207.Peer-Reviewed Original ResearchConceptsMantle cell lymphoma cellsMCL cellsCell lymphoma cellsARV-825ARV-771Lymphoma cellsGreater survival improvementSuperior preclinical activityCDK4/6 inhibitor palbociclibNuclear factor-κB (NF-κB) target genesExtraterminal protein inhibitorSurvival improvementInhibitor palbociclibPreclinical activityCDKN1A/p21Inhibitor treatmentSuperior pharmacological propertiesVivo growthCyclin D1Pharmacological propertiesProtein expressionMore apoptosisVivo evaluationIncomplete inhibitionC-MycNovel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells
Saenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Mill CP, Sun B, Qiu P, Kadia TM, Pemmaraju N, DiNardo C, Kim MS, Nowak AJ, Coarfa C, Crews CM, Verstovsek S, Bhalla KN. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 2017, 31: 1951-1961. PMID: 28042144, PMCID: PMC5537055, DOI: 10.1038/leu.2016.393.Peer-Reviewed Original ResearchConceptsBET protein inhibitorARV-825Messenger RNAReverse phase protein arrayPhase protein arrayRNA-seqHematopoietic progenitor cellsNormal hematopoietic progenitor cellsBET proteinsE3 ubiquitin ligase cereblonLevels of p21Extraterminal (BET) proteinsBcl-xLBromodomain inhibitorsC-MycJAK inhibitor ruxolitinibBRD4Protein arraysProgenitor cellsProtein expressionHEL92.1.7 cellsImproved survivalLeukemia burdenNSG miceProfound depletion
2016
Small‐Molecule PROTACS: New Approaches to Protein Degradation
Toure M, Crews CM. Small‐Molecule PROTACS: New Approaches to Protein Degradation. Angewandte Chemie International Edition 2016, 55: 1966-1973. PMID: 26756721, DOI: 10.1002/anie.201507978.Peer-Reviewed Original ResearchConceptsProteolysis-targeting chimerasProtein degradationCellular quality control machineryQuality control machineryNovel catalytic mechanismInhibitor-based approachDrug target spaceProtein functionControl machineryProtein classesProtein destructionCatalytic mechanismCellular levelActive siteTherapeutic potentialOff-target side effectsMachineryRecent reportsChimerasDegradationRecruitmentTherapeuticsInhibition
2015
HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins
Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology 2015, 10: 1831-1837. PMID: 26070106, PMCID: PMC4629848, DOI: 10.1021/acschembio.5b00442.Peer-Reviewed Original ResearchConceptsChemical probesMore drug-like propertiesFusion proteinSmall-molecule PROTACsProtein degradationDrug-like propertiesE3 ligase ligandChemical genetic toolsSpecific E3 ligasesProtein of interestVHL ligandsHaloTag fusion proteinsE3 ligasesGenetic toolsHeterobifunctional moleculesNumerous proteinsHaloPROTACLigandsPROTACsProteinNovel classAttractive strategyDegradationProbeLigasesSmall‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging
Gustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL, Tae HS, Sundberg TB, Stagg DB, Hines J, McDonnell DP, Norris JD, Crews CM. Small‐Molecule‐Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie International Edition 2015, 54: 9659-9662. PMID: 26083457, PMCID: PMC4547777, DOI: 10.1002/anie.201503720.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen Receptor AntagonistsAntineoplastic AgentsBenzamidesCell Line, TumorCell ProliferationDrug Resistance, NeoplasmHumansHydrophobic and Hydrophilic InteractionsMaleNitrilesPhenylthiohydantoinPoint MutationProstateProstatic NeoplasmsProteolysisReceptors, AndrogenSmall Molecule LibrariesConceptsSelective androgen receptor degradersAndrogen receptorAR mutationsAndrogen-dependent prostate cancer cell lineSecond-generation AR antagonistsAR degradationProstate tumor cell proliferationProstate cancer cell linesAR target genesTumor cell proliferationAntitumor chemotherapeutic agentsCancer cell linesAR antagonistsChemotherapeutic agentsCell proliferationAR ligandsCell linesAntagonistTumor strategyResistance mechanismsReceptorsRecent studiesProliferationTarget genesDependent transcription
2014
Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System
Buckley DL, Crews CM. Small‐Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie International Edition 2014, 53: 2312-2330. PMID: 24459094, PMCID: PMC4348030, DOI: 10.1002/anie.201307761.Peer-Reviewed Original ResearchConceptsSmall molecule modulatorsProtein levelsSmall-molecule probesUbiquitin-proteasome systemActivity of proteinsIntracellular protein levelsBiological probesProteasome systemProtein degradationUbiquitin-proteasomeProtein activitySmall moleculesMolecule controlDruggable targetsProteomeProteasomeTargeted fashionProteinRemaining majorityGlobal increaseProbeUPSMoleculesDegradationMultiple strategies
2013
Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs
Hines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 8942-8947. PMID: 23674677, PMCID: PMC3670320, DOI: 10.1073/pnas.1217206110.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnalysis of VarianceAnimalsChromatography, High Pressure LiquidEnzyme ActivationFemaleGene Knockdown TechniquesHumansImmunoblottingMCF-7 CellsMiceMolecular Sequence DataMolecular StructurePC12 CellsPhosphatidylinositol 3-KinasesPhosphorylationProtein Processing, Post-TranslationalProteolysisRatsReceptor Protein-Tyrosine KinasesReceptor, ErbB-3Receptor, Fibroblast Growth Factor, Type 2Receptor, trkASignal TransductionStreptavidinVon Hippel-Lindau Tumor Suppressor ProteinConceptsGrowth factor receptorProtein knockdownFibroblast growth factor receptor substrateVon Hippel-Lindau proteinSpecific receptor tyrosine kinasesKinase-mediated phosphorylationReceptor tyrosine kinase pathwaysFactor receptorKinase signal pathwayTyrosine kinase activationReceptor tyrosine kinasesTyrosine kinase pathwayConditional degradationPhosphorylation sequenceKinase pathwayReceptor substrateKinase activationNucleic acid-based strategiesLindau proteinTarget protein knockdownSpecific proteinsTyrosine kinaseCell-type selectivityNerve growth factor receptorKnockdown